In this research work, synthesis, antimicrobial and antioxidant bioactivity of a chain of compounds having unsaturated ketones bond and isoxazoline moiety have been described. New chalcone derivatives containing isoxazoline moiety have been synthesized. Generally, Chalcones are unsaturated ketones bearing (-CO-CH=CH-) as reactive ketoethylenic group that give the bright yellow colored compounds due to this chromophore group. Firstly, chalcones (IIa-d) have been prepared by cyclocondensation (Claisen-Schmidt condensation) of triphenyl aminobenzaldehyde with different substituted acetophenone in ethyl alcohol to produce a series of chalcones compounds with bright yellow colored as a starting material,. The next step involving the novel chalcones (IIa-d) reacted with hydroxylamine hydrochloride afforded a new isoxazoline compounds (IIIa-d) in basic medium. The prepared compounds were fully characterized by melting points, FTIR, 1H-NMR spectroscopy, 13 C-NMR for some compounds and CHNS techniques. The reactions have been monitored by TLC (Thin Layer Chromatography) technique. The synthesised compound IId showed significant bioactivity against the gram-negative bacteria species. Also, the antioxidant activity of the some new synthesized compounds was evaluated and determined against the DPPH radical (1.1-diphenyl-2-picrylhydrazyl) and compared to that of a standard natural antioxidant, Ascorbic acid, compound IIb showed higher antioxidant activity by using the free radical DPPH. The outcomes of investigation enhanced the activity of new derivatives as antimicrobial reagent.
New derivatives of pyromellitamic diacids and pyromellitdiimides have been prepared by the reaction of one mole of pyromellitic dianhydride with two moles of aromatic amines, these derivatives were characterized by elemental analysis, FT-IR and melting point.
The study of biopolymers and their derivative materials had received a considerable degree of attention from researchers in the preparation of novel material. Biopolymers and their derivatives have a wide range of applications as a result of their bio-compatibility, bio-degradability and non-toxicity. In this paper, chitosan reacted with different aldehydes(2,4 –dichloro- benzaldehyde or 2-methyl benzaldehyde), different ketones (4-bromoacetophenone or 3-aminoacetophenone) to produce chitosan schiff base (1-4) . Chitosan schiff base (1-4) reacted with glutaric acid or adipic acid in acidic media in distilled water according to the steps of Fischer and Speier to produce compounds (5-12)
... Show MoreMetal complexes of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), Zn(II), Hg(II), Pd(II), and Pt(II) with Schiff base ligand (LH) derived from 2,5-dichloroaniline and 2-hydroxy-5-metheylbenzalaldehyde were synthesized and characterized using a variety of spectrophotometric techniques The findings of the spectroscopic analysis indicated that (LH) behaved as a binary coordinating agent to the metal ion by the N and O atoms, and the geometry shape of the complexes was octahedral, with the exception of the Pd and Pt complexes, which had a square planar geometry. Using the DPPH radical scavenging method, we investigated the antimicrobial activity of the compound against Staphylococcus aureus and Escherichia coli, as well as the antifungal activity of t
... Show MoreIn this research four steps of the new derivatives of Naproxen drug have been made which are known as a high medicinal effectiveness; the first step involved converting Naproxen into the corresponding ester (A) by reaction Naproxen with methanol absolute in presence H2SO4. While the second step involved treatment methyl Naproxen ester (A) with hydrazine hydrate 80% in presence of ethanol .The third reaction requires synthesis of Schiff bases (C1-C10) by condensation. of Naproxen hydrazide (B) with many substituted aromatic aldehydes . Finally, the fourth step synthesized new tetrazole derivatives ( D1- D10) by the reaction of the prepared Schiff bases (in the third step) with Sodium azide in THF as a solvent .The prepared compounds wer
... Show MoreABSTRACT : This research involves the synthesis of five to seven heterocyclic compounds starting with Schiff’s bases which derived from oxime as a starting material. 1.3-oxazepine derivatives were prepared from adding different anhydrides to the Schiff bases, tetrazole and thiazolidinone derivatives synthesized from add sodium azide and thioglycolic acid to the same Schiff’s bases as a five members ring. Pyrimidine derivatives were prepared after the reaction of the azomethine group with acetyl chloride and then urea and thiourea to synthesis on derivatives contain the six members ring. Another step included identified and confirmed these compounds by FT- IR, 1HNMR, TLC and 13CNMR finally, step included the assay of biological activity
... Show MoreThe search involve the synthesis of some new 1,3-oxazepine and 1,3-diazepine derivatives were synthesized from Schiff base. The Schiff base (VIII) prepared from reaction of aldehyde (IV) derived from L-ascorbic acid with aromatic amine ([2-(4- nitrophenyl)-5-(4-aminophenyl)-1,3,4-oxadiazole] (VII). Oxazepine compounds (IX-XI) were synthesized from the cyclic condensation of Schiff base (VIII) with (maleic, phthalic and 3-nitrophthalic) anhydride, compounds (IX-XI) that were reacted with p-methoxyaniline to give diazepine derivatives (XII-XIV). The structures of the new synthesized compounds have been confirmed by physical properties and spectroscopy measurements such as FTIR, and some of them by 1 H-NMR, 13 CNMR, Mass, and evaluated
... Show MoreTwo new organotin(IV) complexes Me2Snesc (C1) and Bu2Snesc (C2) have been synthesised from the reaction of the corresponding organotin(IV) chloride with the Schiff base ligand 3,4-dihydroxybenzaldehyde-4-ethylsemicarbazone (H2esc). The ligand was prepared in two steps. The first step includes the formation of 4-ethylsemicarbazide, which then reacted with 3,4-dihydroxybenzaldehyde to give the title ligand. Complex formation between the organotin(IV) moiety and the anionic form of 3,4-dihydroxybenzaldehy-4-ethylsemicarbazone occurred through the o-dihydroxy positions. The ligand and its complexes were characterised by elemental analysis, FT-IR and NMR (1H, 13C and 119Sn) spectroscopy. Accordingly, the complexes were proposed to have tetrahedr
... Show More