The Role of the Deubiquitylase MYSM1 During Alphavirus Infection Amer Nubgan The members of the genus Alphavirus are positive-sense RNA viruses and it is one of two within the family Togaviridae. Most alphaviruses are predominantly transmitted to susceptible vertebrates by a mosquito vector. Alphavirus disease in humans can be severely debilitating, and depending on the particular viral species, infection may result in encephalitis and possibly life threatening symptoms. Chikungunya virus (CHIKV) is the aetiological agent represents a substantial health burden to affected populations, with clinical symptoms that include severe joint and muscle pain, rashes, and fever, as well as prolonged periods of disability in some patients. In recent years, CHIKV has received significant attention from public health authorities as a consequence of the dramatic emergence infections in the Indian Ocean islands and the Caribbean as well as the recent emergence of CHIKV in the Americas. Infections have also been reported around Europe such as in Italy, France and Greece. Currently, no safe, approved or effective vaccine or treatment exists for CHIKV infection. The ubiquitin-proteasome system (UPS), the major intracellular proteolytic pathway, mediates different kinds of cellular processes, which may be targeted by viruses to aid their replication within cells. In recent years it has been well established that both the forward reaction of ubiquitination, and the reverse reaction of deubiquitination are targeted during virus infection to enhance their replication, either by targeting of cellular proteins or encoding viral homologues of key pathway proteins. The reverse reaction is undertaken by a large family of enzymes termed deubiquitylases or DUBs, and many of these have been shown to play a crucial role, not only in virus replication but also in the regulation of the immune system and vesicle trafficking. The DUBs are attractive drug targets and have increasingly been implicated in cellular processes germane to malignancy which makes the continued characterisation of the role of DUBs during virus infection a worthwhile objective. In on-going experiments in the research group a DUB siRNA pools library screen identified 12 DUBs (USP1, USP4, USP5, USP34, USP45, USP46, OTUD6A, UCHL1, JOSD2, BRCC3 and MYSM1). Depletion of these hits in HeLa cells lead to an increase in cell viability following Semiliki Forest Virus (SFV) infection (and predicted to be pro-viral) and thus could potential be candidate antiviral targets. Inroads into understanding the role of the DUB hits during the alphavirus infection, focusing initial on the BSL2 model virus SFV, and extending this to CHIKV (at BSL3). In the present study, further screening focused on the deconvolution siRNA pools for the DUB hits. Investigation of the subsequent follow up experiments with one strong candidate DUB from this list, MYSM1. Two different approaches were taken. Firstly, the effect of depletion of MYSM1 by siRNA treatment was further investigated in HeLa cells. Secondly, the analysis was extended to investigate the role of MYSM1 in fibroblasts utilising MYSM1 genetic knockout murine embryo fibroblasts. Results from this study indicate that depletion of MYSM1 in HeLa cells by siRNAs resulted in a reduction in both SFV and CHIKV replication, as assayed by measuring RNA levels and plaque formation. It was also found that MYSM1 genetic knockout in MEF cells lead to increase in both SFV and CHIKV replication. In addition, depletion of MYSM1 by siRNAs in MRC-5 cells lead to increase in SFV replication. In conclusion, MYSM1 generated interesting data, implying a role during virus infection that appeared to depend on the cell type being infected. Up to now it is unclear what the effector mechanisms are that contribute to these observations, subject to further mechanistic and functional studies, may increase the options available for targeting this vital DUB during Alphavirus infections.
A study of non-diatom algal species composition in twelve sites from Greater Zab River path within
Erbil Province, was carried out from April 2021 to January 2022 with monthly sample collection in twelve studied sites. Among them site 4,5,6,7 and 9 are the first for algal study in this area. The 112 different species of algae belong to 33 genera, 25 families, 13 orders and 4 divisions have been identified. The predominant genera included Spirogyra and Cosmarium 17, 8 taxa respectively. 13 taxa were new recorded to Iraqi
Kurdistan algal flora and 9 of them were new recorded to Iraqi algal flora: Botryosphaerella sudetica, Muriella magna, Gloeotaenium loitlesbergianum, Apiocystis brauniana, Anabaena oscillarioides, C. distentum
This research concentrate on cultivated Iraqi Agave attenuata dried leaves and roots, because of little studies on this plant especially on the root that lead to the eager of study and comparison of phytochemical constituents between leaves and root. Extraction of bioactive constituents was carried out using several solvents with increasing polarity (n-hexane, ethyl acetate and methanol) by soxhlet apparatus. Steroidal saponins in Agave genus is well documented in many species, lightening the minds in this research on extraction method which is specific for steroidal saponins. Phytochemical screening was done by GC/MS for n-hexane fraction, qualitative and quantitative estimation of several bioactive constituents (caffe
... Show MoreA new Schiff base [1-((2-(1H-indol-3-yl)ethylimino)methyl)naphthalene-2-ol] (HL) has been synthesized by condensing (2-hydroxy-1-naphthaldehyde) with (2-(1H-indol-3-yl)ethylamine). In turn, its transition metal complexes were prepared having the general formula; [Pt(IV)Cl2(L)2], [Re(V)Cl2(L)2]Cl and [Pd(L)2], 2K[M(II)Cl2(L)2] where M(II) = Co, Ni, Cu] are reported. Ligand as well as metal complexes are characterized by spectroscopic techniques such as FT-IR, UV-visible, 13C & 1H NMR, mass, elemental analysis. The results suggested that the ligand behaves like a bidentate ligand for all the synthesized complexes. On the other hand, theoretical studies of the ligand as well its metal complexes were conducted at gas phase using Hyp
... Show Moreاثناء تفاعل الديزنة تكونت صبغة أزو جديدة عن طريق تفاعل 3-امينوفينول مع 2,4,6-ثلاثي هيدروكسي اسيتوفينون . ثم تم تفاعل هذا الليكاند مع بعض ايونات العناصر الكروم والحديد الروديوم والروثينيوم بتكفؤهم الثلاثي والكوبلت الثنائي والموليبدينوم سداسي التكافؤ مكونة معقدات فلزية مختلفة بأشكال هندسية متعددة. تم ملاحظة تناسق مجموعة الازو مع ايونات العناصر من خلال ملاحظة ظهور حزم امتصاص الفلز مع النتروجين والاوكسجين ب
... Show MoreThe Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current dens
... Show MoreSemiconductor-based photocatalytic processes are widely applied as ecofriendly technology for degrading organic pollutants. Establishing photocatalytic heterojunctions with Z-type photocarriers transfer pathways is projected to be a superb strategy to enhance photocatalytic behavior. In this paper, novel and stable (0D/2D) heterojunctions of CoS-embedded boron-doped g-C3N4 (CoS/BCN) with a high rate of charges transfer/separation were assembled for degradation of malachite green dye (MG). The CoS/BCN photocatalyst achieves a photodegradation efficiency of 96.9 % within 1 h of LED illumination, which is 2.5 and 1.4-fold enhancement compared with bare g-C3N4 and BCN, respectively. Besides, the results of species-trapping trials exhibited that
... Show MoreKE Sharquie, SA Al Mashhadani, AA Noaimi, RK Al-Hayani, SA Shubber, Iraqi Postgraduate Medical Journal, 2012 - Cited by 1
The ligand 4-amino-N-(5-methylisoxazole-3-yl)-benzene-sulfonamide(L1) (as a chelating ligand) was treated with Pd(II),Pt (IV) and Au(III) ions in alcoholic medium in order to prepare a series of new metal complexes. Mixed ligand complexes of this primary ligand were prepared in alcoholic medium in presence of the co-ligand 4,4'-dimethyl-2,2'-bipyridyl(L2) with Cu(II) ,Pd(II) and Au(III) ions. The complexes were characterized in solid state using flame atomic absorption, elemental analysis C.H.N.S, FT-IR, UV-Vis Spectroscopy, conductivity and magnetic susceptibility measurements. The nature of some complexes formed in ethanolic solution has been studied following the molar ratio method, also stability constant was studied and the complexes f
... Show MorePlantation of humic acid nanoparticles on the inert sand through simple impregnation to obtain the permeable reactive barrier (PRB) for treating of groundwater contaminated with copper and cadmium ions. The humic acid was extracted from sewage sludge which is byproduct of the wastewater treatment plant; so, this considers an application of sustainable development. Batch tests signified that the coated sand by humic acid (CSHA) had removal efficiencies exceeded 98 % at contact time, sorbent dosage, and initial pH of 1 h, 0.25 g/50 mL and 7, respectively for 10 mg/L initial concentration and 200 rpm agitation speed. Results proved that physicosorption was the predominant mechanism for metals-CSHA interaction because the sorption data followed
... Show More