The Role of the Deubiquitylase MYSM1 During Alphavirus Infection Amer Nubgan The members of the genus Alphavirus are positive-sense RNA viruses and it is one of two within the family Togaviridae. Most alphaviruses are predominantly transmitted to susceptible vertebrates by a mosquito vector. Alphavirus disease in humans can be severely debilitating, and depending on the particular viral species, infection may result in encephalitis and possibly life threatening symptoms. Chikungunya virus (CHIKV) is the aetiological agent represents a substantial health burden to affected populations, with clinical symptoms that include severe joint and muscle pain, rashes, and fever, as well as prolonged periods of disability in some patients. In recent years, CHIKV has received significant attention from public health authorities as a consequence of the dramatic emergence infections in the Indian Ocean islands and the Caribbean as well as the recent emergence of CHIKV in the Americas. Infections have also been reported around Europe such as in Italy, France and Greece. Currently, no safe, approved or effective vaccine or treatment exists for CHIKV infection. The ubiquitin-proteasome system (UPS), the major intracellular proteolytic pathway, mediates different kinds of cellular processes, which may be targeted by viruses to aid their replication within cells. In recent years it has been well established that both the forward reaction of ubiquitination, and the reverse reaction of deubiquitination are targeted during virus infection to enhance their replication, either by targeting of cellular proteins or encoding viral homologues of key pathway proteins. The reverse reaction is undertaken by a large family of enzymes termed deubiquitylases or DUBs, and many of these have been shown to play a crucial role, not only in virus replication but also in the regulation of the immune system and vesicle trafficking. The DUBs are attractive drug targets and have increasingly been implicated in cellular processes germane to malignancy which makes the continued characterisation of the role of DUBs during virus infection a worthwhile objective. In on-going experiments in the research group a DUB siRNA pools library screen identified 12 DUBs (USP1, USP4, USP5, USP34, USP45, USP46, OTUD6A, UCHL1, JOSD2, BRCC3 and MYSM1). Depletion of these hits in HeLa cells lead to an increase in cell viability following Semiliki Forest Virus (SFV) infection (and predicted to be pro-viral) and thus could potential be candidate antiviral targets. Inroads into understanding the role of the DUB hits during the alphavirus infection, focusing initial on the BSL2 model virus SFV, and extending this to CHIKV (at BSL3). In the present study, further screening focused on the deconvolution siRNA pools for the DUB hits. Investigation of the subsequent follow up experiments with one strong candidate DUB from this list, MYSM1. Two different approaches were taken. Firstly, the effect of depletion of MYSM1 by siRNA treatment was further investigated in HeLa cells. Secondly, the analysis was extended to investigate the role of MYSM1 in fibroblasts utilising MYSM1 genetic knockout murine embryo fibroblasts. Results from this study indicate that depletion of MYSM1 in HeLa cells by siRNAs resulted in a reduction in both SFV and CHIKV replication, as assayed by measuring RNA levels and plaque formation. It was also found that MYSM1 genetic knockout in MEF cells lead to increase in both SFV and CHIKV replication. In addition, depletion of MYSM1 by siRNAs in MRC-5 cells lead to increase in SFV replication. In conclusion, MYSM1 generated interesting data, implying a role during virus infection that appeared to depend on the cell type being infected. Up to now it is unclear what the effector mechanisms are that contribute to these observations, subject to further mechanistic and functional studies, may increase the options available for targeting this vital DUB during Alphavirus infections.
New chelating ligand derived from triazole and its complexes with metal ions Rhodium, Platinum and Gold were synthesized. Through a copper (I)-catalyzed click reaction, the ligand produced 1,3-dipolar cycloaddition between 2,6-bis((prop-2-yn-1-yloxy) methyl) pyridine and 1-azidododecane. All structures of these new compounds were rigorously characterized in the solid state using spectroscopic techniques like: 1HNMR, 13CNMR, Uv-Vis, FTIR, metal and elemental analyses, magnetic susceptibility and conductivity measurements at room temperature, it was found that the ligand acts as a penta and tetradentate chelate through N3O2, N2O2, and the geometry of the new complex
... Show MoreKE Sharquie, AA Al-Nuaimy, WJ Kadhum, Saudi medical journal, 2006 - Cited by 3
Abstract: Microfluidic devices present unique advantages for the development of efficient drug assay and screening. The microfluidic platforms might offer a more rapid and cost-effective alternative. Fluids are confined in devices that have a significant dimension on the micrometer scale. Due to this extreme confinement, the volumes used for drug assays are tiny (milliliters to femtoliters).
In this research, a microfluidic chip consists of micro-channels carved on substrate materials built by using Acrylic (Polymethyl Methacrylate, PMMA) chip was designed using a Carbon Dioxide (CO2) laser machine. The CO2 parameters have influence on the width, depth, roughness of the chip. In order to have regular
... Show Morefication of benzaldehyde (C6H5CHO) and O- amino aniline O-C6H4(NH2)2 in ethanol with 8- Hydroxyquinoline (8HQ) . Formed compounds were acquired of 1:1:2 molar proportion reactions for metal ions and ligands (L) and 2(8HQ) during reaction for MCl2 .nH2O salt products complexes conformable into the forms [M(L)(8HQ)2] ,where M = Mn(II),Co(II) and Ni(II). Whole the compounds were identified during the basis of their; FT-IR and U.V spectrum, melting point, molar conduct, identify of the percentage from the metal at the complexes via flame (AAS), C, H and N content of the Schiff base (L) and metal complexes were analysis and magnetic susceptibility menstruations. A hexagonal coordinated metal complexes were proposed to the separated complexes of
... Show MoreThe present study analyzes the effect of couple stress fluid (CSF) with the activity of connected inclined magnetic field (IMF) of a non-uniform channel (NUC) through a porous medium (PM), taking into account the sliding speed effect on channel walls and the effect of nonlinear particle size, applying long wavelength and low Reynolds count estimates. The mathematical expressions of axial velocity, stream function, mechanical effect and increase in pressure have been analytically determined. The effect of the physical parameter is included in the present model in the computational results. The results of this algorithm have been presented in chart form by applying the mathematical program.
A novel Schiff base ligand (DBC) synthesized from 4-chlorobenzoic acid, along with its Cu (II) and Co (II) complexes, was prepared and characterized using FT-IR, 1H and 13C-NMR, UV-Vis spectroscopy, as well as magnetic and conductivity measurements. Based on this, a tetrahedral structure of [M(DBC)Cl2] was proposed for the complexes. Antioxidant activity of the compounds was assessed and compared to ascorbic acid, revealing that the copper complex exhibited superior antioxidant properties compared to the cobalt complex and the ligand. Furthermore, the antibiofilm potential of the copper and cobalt complexes was assessed against five clinically relevant bacterial species (P.aeruginosa, E.coli, K.pneumoniae, S.aureus and S.typhi) usin
... Show Moreتم تحضير ثلاث معقدات جديدة Ni (II)و Cu (II) و Zn (II) باستخدام الليكند المحضر الجديد من تفاعل حامض مالونيك ثنائي هيدرازايد مع 2-بيريدين كربوكسالديهايد. حيث شخصت المعقدات لمحضرة وكذلك الليكند باستخدام تقنيات مختلفة مثل FT-IR و UV-Vis و Mass و 1H-NMR و 13C-NMR وتحليل العناصر CHN و تقدير محتوى الكلور والموصلية المولارية والحساسية المغناطيسية والامتصاص الذري لتشخيص هذه المركبات. لكل معقد محضر جديد من النيكل والنحاس والزنك ، كشفت نتائج ا
... Show MoreA series of Schiff base-bearing salicylaldehyde moiety compounds (1-4) had been designed, synthesized, subjected to insilico ADMET prediction, molecular docking, characterization by FT-IR, and CHNS analysis techniques, and finally to their Anti-inflammatory profile using cyclooxygenase fluorescence inhibitor screening assay methods along with standard drugs, celecoxib, and diclofenac. The ADMET studies were used to predict which compounds would be suitable for oral administration, as well as absorption sites, bioavailability, TPSA, and drug likeness. According to the results of ADME data, all of the produced chemicals can be absorbed through the GIT and have passed Lipinski’s rule of five. Through molecular docking with PyRx 0.8, these
... Show More