Cancer is in general not a result of an abnormality of a single gene but a consequence of changes in many genes, it is therefore of great importance to understand the roles of different oncogenic and tumor suppressor pathways in tumorigenesis. In recent years, there have been many computational models developed to study the genetic alterations of different pathways in the evolutionary process of cancer. However, most of the methods are knowledge-based enrichment analyses and inflexible to analyze user-defined pathways or gene sets. In this paper, we develop a nonparametric and data-driven approach to testing for the dynamic changes of pathways over the cancer progression. Our method is based on an expansion and refinement of the pathway being studied, followed by a graph-based multivariate test, which is very easy to implement in practice. The new test is applied to the rich Cancer Genome Atlas data to study the (epi)genetic alterations of 186 KEGG pathways in the development of serous ovarian cancer. To make use of the comprehensive data, we incorporate three data types in the analysis representing gene expression level, copy number and DNA methylation level. Our analysis suggests a list of nine pathways that are closely associated with serous ovarian cancer progression, including cell cycle, ERBB, JAK-STAT signaling and p53 signaling pathways. By pairwise tests, we found that most of the identified pathways contribute only to a particular transition step. For instance, the cell cycle and ERBB pathways play key roles in the early-stage transition, while the ECM receptor and apoptosis pathways contribute to the progression from stage III to stage IV. The proposed computational pipeline is powerful in detecting important pathways and gene sets that drive cancers at certain stage(s). It offers new insights into the understanding of molecular mechanism of cancer initiation and progression. © 2020 Elsevier Ltd
Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated
... Show MoreAgent technology has a widespread usage in most of computerized systems. In this paper agent technology has been applied to monitor wear test for an aluminium silicon alloy which is used in automotive parts and gears of light loads. In addition to wear test monitoring، porosity effect on
wear resistance has been investigated. To get a controlled amount of porosity, the specimens have
been made by powder metallurgy process with various pressures (100, 200 and 600) MPa. The aim of
this investigation is a proactive step to avoid the failure occurrence by the porosity.
A dry wear tests have been achieved by subjecting three reciprocated loads (1000, 1500 and 2000)g
for three periods (10, 45 and 90)min. The weight difference a
Solar cells has been assembly with electrolytes including I−/I−3 redox duality employ polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC), with double iodide salts of tetrabutylammonium iodide (TBAI) and Lithium iodide (LiI) and iodine (I2) were thoughtful for enhancing the efficiency of the solar cells. The rendering of the solar cells has been examining by alteration the weight ratio of the salts in the electrolyte. The solar cell with electrolyte comprises (60% wt. TBAI/40% wt. LiI (+I2)) display elevated efficiency of 5.189% under 1000 W/m2 light intensity. While the solar cell with electrolyte comprises (60% wt. LiI/40% wt. TBAI (+I2)) display a lower efficiency of 3.189%. The conductivity raises with the
... Show MoreBotnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show MoreThere has been a great deal of research into the considerable challenge of managing of traffic at road junctions; its application to vehicular ad hoc network (VANET) has proved to be of great interest in the developed world. Dynamic topology is one of the vital challenges facing VANET; as a result, routing of packets to their destination successfully and efficiently is a non-simplistic undertaking. This paper presents a MDORA, an efficient and uncomplicated algorithm enabling intelligent wireless vehicular communications. MDORA is a robust routing algorithm that facilitates reliable routing through communication between vehicles. As a position-based routing technique, the MDORA algorithm, vehicles' precise locations are used to establish th
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreModeling data acquisition systems (DASs) can support the vehicle industry in the development and design of sophisticated driver assistance systems. Modeling DASs on the basis of multiple criteria is considered as a multicriteria decision-making (MCDM) problem. Although literature reviews have provided models for DASs, the issue of imprecise, unclear, and ambiguous information remains unresolved. Compared with existing MCDM methods, the robustness of the fuzzy decision by opinion score method II (FDOSM II) and fuzzy weighted with zero inconsistency II (FWZIC II) is demonstrated for modeling the DASs. However, these methods are implemented in an intuitionistic fuzzy set environment that restricts the ability of experts to provide mem
... Show More