Cancer is in general not a result of an abnormality of a single gene but a consequence of changes in many genes, it is therefore of great importance to understand the roles of different oncogenic and tumor suppressor pathways in tumorigenesis. In recent years, there have been many computational models developed to study the genetic alterations of different pathways in the evolutionary process of cancer. However, most of the methods are knowledge-based enrichment analyses and inflexible to analyze user-defined pathways or gene sets. In this paper, we develop a nonparametric and data-driven approach to testing for the dynamic changes of pathways over the cancer progression. Our method is based on an expansion and refinement of the pathway being studied, followed by a graph-based multivariate test, which is very easy to implement in practice. The new test is applied to the rich Cancer Genome Atlas data to study the (epi)genetic alterations of 186 KEGG pathways in the development of serous ovarian cancer. To make use of the comprehensive data, we incorporate three data types in the analysis representing gene expression level, copy number and DNA methylation level. Our analysis suggests a list of nine pathways that are closely associated with serous ovarian cancer progression, including cell cycle, ERBB, JAK-STAT signaling and p53 signaling pathways. By pairwise tests, we found that most of the identified pathways contribute only to a particular transition step. For instance, the cell cycle and ERBB pathways play key roles in the early-stage transition, while the ECM receptor and apoptosis pathways contribute to the progression from stage III to stage IV. The proposed computational pipeline is powerful in detecting important pathways and gene sets that drive cancers at certain stage(s). It offers new insights into the understanding of molecular mechanism of cancer initiation and progression. © 2020 Elsevier Ltd
Currently, with the huge increase in modern communication and network applications, the speed of transformation and storing data in compact forms are pressing issues. Daily an enormous amount of images are stored and shared among people every moment, especially in the social media realm, but unfortunately, even with these marvelous applications, the limited size of sent data is still the main restriction's, where essentially all these applications utilized the well-known Joint Photographic Experts Group (JPEG) standard techniques, in the same way, the need for construction of universally accepted standard compression systems urgently required to play a key role in the immense revolution. This review is concerned with Different
... Show MoreImplementation of TSFS (Transposition, Substitution, Folding, and Shifting) algorithm as an encryption algorithm in database security had limitations in character set and the number of keys used. The proposed cryptosystem is based on making some enhancements on the phases of TSFS encryption algorithm by computing the determinant of the keys matrices which affects the implementation of the algorithm phases. These changes showed high security to the database against different types of security attacks by achieving both goals of confusion and diffusion.
The multi-focus image fusion method can fuse more than one focused image to generate a single image with more accurate description. The purpose of image fusion is to generate one image by combining information from many source images of the same scene. In this paper, a multi-focus image fusion method is proposed with a hybrid pixel level obtained in the spatial and transform domains. The proposed method is implemented on multi-focus source images in YCbCr color space. As the first step two-level stationary wavelet transform was applied on the Y channel of two source images. The fused Y channel is implemented by using many fusion rule techniques. The Cb and Cr channels of the source images are fused using principal component analysis (PCA).
... Show MoreResearchers are increasingly using multimodal biometrics to strengthen the security of biometric applications. In this study, a strong multimodal human identification model was developed to address the growing problem of spoofing attacks in biometric security systems. Through the use of metaheuristic optimization methods, such as the Genetic Algorithm(GA), Ant Colony Optimization(ACO), and Particle Swarm Optimization (PSO) for feature selection, this unique model incorporates three biometric modalities: face, iris, and fingerprint. Image pre-processing, feature extraction, critical image feature selection, and multibiometric recognition are the four main steps in the workflow of the system. To determine its performance, the model wa
... Show MoreMulti-walled carbon nanotubes from cheap tubs company MWCNT-CP were purified by alcohol \ H2O2 \ separation funnel which is simple, easy and scalable techniques. The steps of purification were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy SEM with energy dispersive of X-ray spectroscopy EDX and surface area measurements. The technique was succeeded to remove most the trace element from MWCNT-CP which causing increase the surface area. The ratios of impurities were reduced to less 0.6% after treatment by three steps with losing less than 5% from MWCNT-CP.