Unused and expired pharmaceutical drugs are a novel type of organic corrosion inhibitor. They are less expensive, more effective, and less harmful than conventional organic corrosion inhibitors. This study investigated the effects of concentration, adsorption mechanism and thermodynamic parameters of enalapril malate (ENAP) as a corrosion inhibitor for carbon steel in a saline solution (3.5 % NaCl). The polarization method was used to determine the corrosion rate and inhibition efficiency. Field emission scanning electron microscopy (FE-SEM) and atomic force spectroscopy (AFM) were used to investigate the surface morphology and topography of carbon steel after immersion in both uninhibited and inhibited media for 24 h. Fourier transform infrared spectroscopy (FTIR) was used to confirm the adsorption of ENAP inhibitor on the surface of the carbon steel. The results showed that the inhibition efficacy (IE%) reached 89.74 % when the corrosive solution was inhibited by 1200 ppm of ENAP at 298 K. The results also revealed a strong linear relationship between Cinh/θ and Cinh, which best fitted the Langmuir isotherm model. Thermodynamic and kinetic studies indicated that the ENAP inhibitor underwent physical adsorption on an energetically homogenous adsorbent surface. The apparent activation energies (Ea∗) of the inhibited process were higher compared to the uninhibited process at all concentrations. FE-SEM analysis showed significantly reduce in the corrosion of carbon steel in the 3.5 % NaCl inhibited by ENAP compared with free saline solution.
The corrosion inhibition of aluminum alloy 5083 by an environment friendly compound called (8- Hydroxyquinoline) in
acidic and alkaline solutions of pH (2 and 12) respectively were studied using weight loss and polarization techniques.
Also to examine the main and combined effects of the inhibitor concentration, pH, and contact time using factorial
experimental design. Results show that corrosion rate decreased with increasing both inhibitor concentration and
contact time and increased with increasing pH value. The polarization curves show that 8-hydroxyquinoline is a
cathodic inhibitor
The main objective of present work is to describe the feasibility of friction stir welding (FSW) for
joining of low carbon steel with dimensions (3 mm X 80 mm X 150 mm). A matrix (3×3) of welding
parameters (welding speed and tool rotational speed) was used to see influence of each parameter on
properties of welded joint .Series of (FSW) experiments were conducted using CNC milling machine
utilizing the wide range of rotational speed and transverse speed of the machine. Effect of welding
parameters on mechanical properties of weld joints were investigated using different mechanical tests
including (tensile and microhardness tests ). Micro structural change during (FSW) process was
studied and different welding zones
This research involves study effect of chloride ions in concentration range (0.01 – 0.50 mol.dm-3) on the corrosion behavior of Al-Zn alloy in basic media of 1x10-3 mol.dm-3 NaOH at pH=11 and four different temperatures in the range (298-313 K). Cathodic and anodic Tafel slopes (bc &ba) and transfer coefficients (αc & αa) were calculated and the results interprets according to the variation of the rate – determining steps. The results also indicate that the chloride ions are bonded chemically in the interface as an initial step of formation of different mixed oxohydroxy – and chloro complexes. Polarization resistance (Rp) is calculates
... Show MoreThe inhibitive effect of imidazol on the dissolution of Zn in (1M) HCl has been studied. The inhibion effect of imidazol ,protection efficiency and the corrosion rate of Zn in (1M) HCl were investigated at various concentrations (1x 10-3 – 5x10-3) M and tempearture range (285-328) K. The corrosion inhibitive of Zn by imidazol was studied using weight loss measurement and analytical titration of the amounts of dissolved zinc in acidic solution in presence and absent of imidazol. It was observed that imidazol led to protection efficiency reached to (88.93)% when (10)mM imidazol concentration was used. A linear relationship came true between (C/?) and (C); where (?) is the coverage of Zn surface by imidazol which could be obtained from
... Show Morethis paper contains preparation of Active carbon surface (AC) from pro so millet grain husks and Loading and activating by Iron oxide and hydrogen peroxide sequentially to obtain surface (ACIPE). The changes of previous processes on Active carbon surface were diagnosed by Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy ( SEM ). These surfaces (AC and ACIPE ) were using as adsorbent for removing of congo red dye from aqueous solutions under certain conditions through batch system. More than one kinetic model was applied to congo red dye adsorption process and it was found that the most kinetic model applied to it is a model ( pseudo second order model).