Solid‐waste management, particularly of aluminum (Al), is a challenge that is being confronted around the world. Therefore, it is valuable to explore methods that can minimize the exploitation of natural assets, such as recycling. In this study, using hazardous Al waste as the main electrodes in the electrocoagulation (EC) process for dye removal from wastewater was discussed. The EC process is considered to be one of the most efficient, promising, and cost‐effective ways of handling various toxic effluents. The effect of current density (10, 20, and 30 mA/cm2), electrolyte concentration (1 and 2 g/L), and initial concentration of Brilliant Blue dye (15 and 30 mg/L) on the efficiency of the EC process were examined in this study. The results show that removal efficiency increased with current density and sodium chloride (NaCl) concentration and decreased with initial dye concentration. The electrical power and electrodes consumed increased with an increase in current density and decreased notably with increased NaCl. The optimum current density and amount of NaCl were 20 mA/cm2 and 2 g/L, respectively to attain highest values of E133 brilliant blue dye removal. The EC process was examined using adsorption isotherms and kinetics models. Those results showed that the Langmuir isotherm matched the experimental data. Furthermore, the experimental data were followed the Elovich model kinetics.
Programs and performance budget represents a sophisticated method of public budget numbers, which includes all allocations to be determined for each job or activity within a government entity, which is analyzed according to their needs and costs, and this method can be applied using one of the cost accounting techniques, which is the technique of analyzing the value chain that reduces costs by avoiding activities that do not add value and enhance activities that add value to the economic entity, the current research aims to develop the budget system in government entity by using the budget of programs and performance as a tool for planning and monitoring events and activities, thereby reducing the waste of public money by reducing unnecessa
... Show MoreThe UN plans to achieve several development objectives by 2030. These objectives address global warming, a major issue. This method aims to improve sustainable accounting performance (AP). In this circumstance, AI is being applied in various fields, notably in economic, social, and environmental (ESE) domains. This research investigates how sustainable development (SD) influences AI methodologies and AP improvement. The research examined a sample of Iraqi banks listed on the Iraq Stock Exchange from 2014 to 2022. AI was measured by ATM and POS prevalence. A three-dimensional approach examined economic, social, and environmental (ESE) sustainability. Meanwhile, the performance of sustainable accounting was measured through the return on asse
... Show MoreInformation about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites
... Show MoreThere are still areas around the world suffer from severe shortage of freshwater supplies. Desalination technologies are not widely used due to their high energy usage, cost, and environmental damaging effects. In this study, a mathematical model of single-bed adsorption desalination system using silica gel-water as working pair is developed and validated via earlier experiments. A very good match between the model predictions and the experimental results is recorded. The objective is to reveal the factors affecting the productivity of fresh water and cooling effect in the solar adsorption system. The proposed model is setup for solving within the commercially-available software (Engineering Equation Solver). It is implemented to so
... Show MoreDirect contact membrane distillation is an effective method for production of fresh water from saline water. In this study two samples were used as feed solutions; the first one was RO waste from Al-Hilla Coca-Cola Factory (TDS= 2382 mg/l) and the other was Haji Ali drainage water (TDS= 4127 mg/l). Polytetrafluoroethylene (PTFE) hydrophobic membrane supported with polypropylene (PP) was used as flat sheet form with plate and frame cell. Results proved that membrane distillation is an effective technique to produce fresh water with high quality from brine with low salinity content. With membrane area of 8x8 cm2, the volume of treated water decreased from 34.97 ml at first half hour to 33.02 ml after 180 min of
... Show MoreIn this research, design of advanced material for sunlight conversion requires focused research to obtain efficient photocatalytic system. Nanostructured ZnO was synthesized using spin coating technique. The structural, morphological and optical properties of annealed nanostructured ZnO thin film at 390 Co for 3 hours were characterized by x-ray diffraction, atomic force microscope AFM and UV-VIS spectrophotometer. Nanostructured ZnO was applied for removal Methylene Blue (MB) dye from water using sunlight induced photocatalytic process. Overall degradation of MB/ZnO was achieved after 120 minutes of sunlight irradiation while it needs more time for MB alone. The reaction rate constant fit pseudo first order for MB/ZnO degradation was 0.
... Show MoreThis paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show More