Preferred Language
Articles
/
x2FQHpkBdMdGkNqjGhNB
Transfer Learning and Hybrid Deep Convolutional Neural Networks Models for Autism Spectrum Disorder Classification From EEG Signals
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jul 31 2017
Journal Name
Journal Of Engineering
Rigid Trunk Sewer Deterioration Prediction Models using Multiple Discriminant and Neural Network Models in Baghdad City, Iraq
...Show More Authors

View Publication Preview PDF
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Controller for Nonlinear CSTR System based on Identification
...Show More Authors

This paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Sep 23 2020
Journal Name
Artificial Intelligence Research
Hybrid approaches to feature subset selection for data classification in high-dimensional feature space
...Show More Authors

This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe

... Show More
View Publication
Crossref
Publication Date
Mon Apr 03 2023
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
An Integrated Grasshopper Optimization Algorithm with Artificial Neural Network for Trusted Nodes Classification Problem
...Show More Authors

Wireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Mon Dec 28 2020
Journal Name
International Journal Of Psychosocial Rehabilitation
Predicting the Sporting Achievement in the Pole Vault for Men Using Artificial Neural Networks
...Show More Authors

The physical sports sector in Iraq suffers from the problem of achieving sports achievements in individual and team games in various Asian and international competitions, for many reasons, including the lack of exploitation of modern, accurate and flexible technologies and means, especially in the field of information technology, especially the technology of artificial neural networks. The main goal of this study is to build an intelligent mathematical model to predict sport achievement in pole vaulting for men, the methodology of the research included the use of five variables as inputs to the neural network, which are Avarage of Speed (m/sec in Before distance 05 meters latest and Distance 05 meters latest, The maximum speed achieved in t

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 03 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
Use of learning methods for gender and age classification based on front shot face images
...Show More Authors

Publication Date
Sat Jun 01 2024
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
A novel fusion-based approach for the classification of packets in wireless body area networks
...Show More Authors

This abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivota

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Feb 07 2019
Journal Name
Journal Of The College Of Education For Women
SPEECH RECOGNITION OF ARABIC WORDS USING ARTIFICIAL NEURAL NETWORKS
...Show More Authors

The speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Engineering
Arabic Sentiment Analysis (ASA) Using Deep Learning Approach
...Show More Authors

Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l

... Show More
View Publication Preview PDF
Crossref (24)
Crossref
Publication Date
Mon Apr 07 2025
Journal Name
Al-nahrain Journal For Engineering Sciences
Navigating the Challenges and Opportunities of Tiny Deep Learning and Tiny Machine Learning in Lung Cancer Identification
...Show More Authors

Lung cancer is the most common dangerous disease that, if treated late, can lead to death. It is more likely to be treated if successfully discovered at an early stage before it worsens. Distinguishing the size, shape, and location of lymphatic nodes can identify the spread of the disease around these nodes. Thus, identifying lung cancer at the early stage is remarkably helpful for doctors. Lung cancer can be diagnosed successfully by expert doctors; however, their limited experience may lead to misdiagnosis and cause medical issues in patients. In the line of computer-assisted systems, many methods and strategies can be used to predict the cancer malignancy level that plays a significant role to provide precise abnormality detectio

... Show More
View Publication
Scopus (1)
Scopus Crossref