Preferred Language
Articles
/
x0KHi5oBMeyNPGM3nM0p
Enhancing smart home energy efficiency through accurate load prediction using deep convolutional neural networks
...Show More Authors

The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute parameters of electrical energy consumption. The method considers the timeseries homes of the information and offers parallelization of large-scale facts processing with magnificent operational efficiency, considering the timeseries aspects of the information and the problematic inherent correlations between variables. The exams have been done using the UCI public dataset, and the experimental findings validate the method's efficacy, which has clear, sensible implications for setting up intelligent strength grid dispatching.

Crossref
View Publication
Publication Date
Fri Dec 01 2023
Journal Name
Case Studies In Construction Materials
Enhancing asphalt binder performance through nano-SiO2 and nano-CaCO3 additives: Rheological and physical insights
...Show More Authors

During the last two decades, nanomaterial application has gained a significant attraction into asphalt technology due to their effect in enhancing asphalt binder improving the asphaltic mixture. This study will modify the asphalt binder with two different nano types, nano SiO2 and CaCO3, at levels ranging from 1% to 7%. The resulting optimum nano-modified Asphalt will be subject to a series of rheological tests, including dynamic shear rheometer (DSR), Viscosity, and bending beam rheometer (BBR) to determine asphalt binder sensitivity towards low-medium-high temperature range. Results indicate that both nano types improved the physical characteristics of Asphalt, and 5% by weight of Asphalt was suggested as a reasonable dosage of nano-SiO2

... Show More
View Publication
Scopus (26)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Engineering
A Prediction Formula for The Estimation of Sediment Load in The Upper Reach of Al-Gharraf River
...Show More Authors

The presence of deposition in the river decreases the river flow capability's efficiency due to the absence of maintenance along the river. In This research, a new formula to evaluate the sediment capacity in the upstream part of Al-Gharraf River will be developed. The current study reach lies in Wasit province with a distance equal to 58 km. The selected reach of the river was divided into thirteen stations. At each station, the suspended load and the bedload were collected from the river during a sampling period extended from February 2019 till July 2019. The samples were examined in the laboratory with a different set of sample tests. The formula was developed using data of ten stations, and the other three s

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Sep 26 2025
Journal Name
Applied Data Science And Analysis
Deep Learning in Genomic Sequencing: Advanced Algorithms for HIV/AIDS Strain Prediction and Drug Resistance Analysis
...Show More Authors

Genome sequencing has significantly improved the understanding of HIV and AIDS through accurate data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral drugs by analyzing chromosomal information and id

... Show More
View Publication
Crossref
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
View Publication
Scopus (6)
Crossref (5)
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Al-khwarizmi Engineering Journal
BCI-Based Smart Room Control using EEG Signals
...Show More Authors

In this paper, we implement and examine a Simulink model with electroencephalography (EEG) to control many actuators based on brain waves. This will be in great demand since it will be useful for certain individuals who are unable to access some control units that need direct contact with humans. In the beginning, ten volunteers of a wide range of (20-66) participated in this study, and the statistical measurements were first calculated for all eight channels. Then the number of channels was reduced by half according to the activation of brain regions within the utilized protocol and the processing time also decreased. Consequently, four of the participants (three males and one female) were chosen to examine the Simulink model during di

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Emergency Fuel Rationing system using RFID Smart Cards
...Show More Authors

Rationing is a commonly used solution for shortages of resources and goods that are vital for the citizens of a country. This paper identifies some common approaches and policies used in rationing as well asrisks that associated to suggesta system for rationing fuelwhichcan work efficiently. Subsequently, addressing all possible security risks and their solutions. The system should theoretically be applicable in emergency situations, requiring less than three months to implement at a low cost and minimal changes to infrastructure.

View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Al-khwarizmi Engineering Journal
BCI-Based Smart Room Control using EEG Signals
...Show More Authors

In this paper, we implement and examine a Simulink model with electroencephalography (EEG) to control many actuators based on brain waves. This will be in great demand since it will be useful for certain individuals who are unable to access some control units that need direct contact with humans. In the beginning, ten volunteers of a wide range of (20-66) participated in this study, and the statistical measurements were first calculated for all eight channels. Then the number of channels was reduced by half according to the activation of brain regions within the utilized protocol and the processing time also decreased. Consequently, four of the participants (three males and one female) were chosen to examine the Simulink model duri

... Show More
Scopus (2)
Scopus Crossref
Publication Date
Fri May 16 2025
Journal Name
Asean Journal Of Science And Engineering
Enhancing Predictive Maintenance in Energy Systems Using a Hybrid Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) Framework for Rotating Machinery
...Show More Authors

This study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Ieee Access
Enhanced Spectral Efficiency in RIS-Assisted MIMO Systems Through Joint Precoding and RIS Configuration
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Fri Mar 13 2020
Journal Name
Plant Archives
Azotobacter chroococcum and Rhizobium leguminosarum inoculums survival in soil and efficiency in enhancing plant growth
...Show More Authors