Preferred Language
Articles
/
x0KHi5oBMeyNPGM3nM0p
Enhancing smart home energy efficiency through accurate load prediction using deep convolutional neural networks
...Show More Authors

The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute parameters of electrical energy consumption. The method considers the timeseries homes of the information and offers parallelization of large-scale facts processing with magnificent operational efficiency, considering the timeseries aspects of the information and the problematic inherent correlations between variables. The exams have been done using the UCI public dataset, and the experimental findings validate the method's efficacy, which has clear, sensible implications for setting up intelligent strength grid dispatching.

Crossref
View Publication
Publication Date
Tue Jun 03 2025
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Comparison of some artificial neural networks for graduate students
...Show More Authors

Artificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Apr 08 2018
Journal Name
Al-khwarizmi Engineering Journal
Energy Consumption Analyzing in Single hop Transmission and Multi-hop Transmission for using Wireless Sensor Networks
...Show More Authors

Wireless sensor networks (WSNs) are emerging in various application like military, area monitoring, health monitoring, industry monitoring and many more. The challenges of the successful WSN application are the energy consumption problem. since the small, portable batteries integrated into the sensor chips cannot be re-charged easily from an economical point of view. This work focusses on prolonging the network lifetime of WSNs by reducing and balancing energy consumption during routing process from hop number point of view. In this paper, performance simulation was done between two types of protocols LEACH that uses single hop path and MODLEACH that uses multi hop path by using Intel Care i3 CPU (2.13GHz) laptop with MATLAB (R2014a). Th

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Jan 27 2019
Journal Name
Civil Engineering Journal
Prediction of Sediment Accumulation Model for Trunk Sewer Using Multiple Linear Regression and Neural Network Techniques
...Show More Authors

Sewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated.  For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers propos

... Show More
View Publication
Scopus (18)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sun Aug 25 2019
Journal Name
Civil Engineering Journal
Optimum Efficiency of PV Panel Using Genetic Algorithms to Touch Proximate Zero Energy House (NZEH)
...Show More Authors

By optimizing the efficiency of a modular simulation model of the PV module structure by genetic algorithm, under several weather conditions, as a portion of recognizing the ideal plan of a Near Zero Energy Household (NZEH), an ideal life cycle cost can be performed. The optimum design from combinations of NZEH-variable designs, are construction positioning, window-to-wall proportion, and glazing categories, which will help maximize the energy created by photovoltaic panels. Comprehensive simulation technique and modeling are utilized in the solar module I-V and for P-V output power. Both of them are constructed on the famous five-parameter model.  In addition, the efficiency of the PV panel is established by the genetic algorithm

... Show More
View Publication
Scopus (36)
Crossref (33)
Scopus Clarivate Crossref
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
View Publication Preview PDF
Scopus (28)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Thu Jun 25 2020
Journal Name
Aip Conference Proceedings
Improving efficiency of solar cell for MnS through annealing
...Show More Authors

Publication Date
Wed Jan 01 2025
Journal Name
Smart Innovation, Systems And Technologies
An Exploration of Current Trends for Enhancing Multimedia Transfer Efficiency
...Show More Authors

This report explores emerging techniques to boost multimedia transfer effectiveness, given the escalating need for improved quality and performance in multimedia interactions. The analysis involves a thorough literature assessment and comparison of present strategies to pinpoint key tendencies and propose novel approaches. The methodology involves examining recent technological enhance ments in video coding standards, quality appraisal methods, and compression tech niques. Specific domains investigated comprise firmware component architectures, 4D indexing structures, and iterative filtering frameworks. The study in addition weighs tradeoffs between video quality, encoding intricacy, and bitrate demands. Key determinations consist of

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Crack Growth Behavior through Wall Pipes under Impact Load and Hygrothremal Environment
...Show More Authors

This research concerns study the crack growth in the wall of pipes made of low carbon steel under the impact load and using the effect of hygrothermal (rate of moisture 50% and 50℃ temperature). The environmental conditions were controlled using high accuracy digital control with sensors. The pipe have a crack already. The test was performed and on two type of specimens, one have length of 100cm and other have length 50cm. The results were, when the humidity was applied to the pipe, the crack would enhance to growth (i.e. the number of cycles needed to growth the crack will reduce). In addition, when the temperature was increase the number of cycles needed to growth the crack are reduced because the effect of heat on the mechanical pro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 17 2018
Journal Name
International Journal Of Civil Engineering And Technology (ijciet)
ESTIMATION OF MUNICIPAL SOLID WASTE GENERATION AND LANDFILL VOLUME GENERATION AND LANDFILL VOLUME USING ARTIFICIAL NEURAL NETWORKS
...Show More Authors

Publication Date
Fri Apr 01 2022
Journal Name
Bulletin Of Electrical Engineering And Informatics
Improvement of energy consumption in MIMO with cognitive radio networks
...Show More Authors

The employment of cognitive radio (CR) is critical to the successful development of wireless communications. In this field, especially when using the multiple input multiple output (MIMO) antenna technology, energy consumption is critical. If the principal user (PU) is present, developers can utilize the energy detecting approach to tell. The researchers employed two distinct phases to conduct their research: the intense and accurate sensing stages. After the furious sensing step was completed, the PU user was identified as having a maximum or minimal energy channel. There are two situations in which the proposed algorithm's performance is tested: channels for fading AWGN and Rayleigh. When the proposed methods' simulation results a

... Show More
View Publication
Scopus (1)
Scopus Crossref