Sports management is a fundamental pillar that supports sports institutions and plays a pivotal role in achieving advanced levels of success in talent development. The Talent Development Project is one of the key strategic initiatives of the Ministry of Youth and Sports. This study compares department heads with effective managerial competence to those with ineffective competence to highlight differences in performance quality. Through this comparison, the urgent need to assess the administrative performance skills of the heads of sports talent departments becomes evident, particularly their ability to lead and manage the Sports Talent Development Project. The objective is to identify strengths and weaknesses, establish a clear framework for performance enhancement, and contribute to strengthening sustainable management effectiveness to achieve the desired outcomes. The research problem lies in the challenges faced by the heads of sports talent departments in the Ministry of Youth and Sports in effectively applying administrative performance skills. These challenges lead to inconsistencies in performance levels, which in turn negatively impact decision-making and hinder the achievement of project objectives, ultimately delaying the institution’s progress. The objective of this research was to examine the differences in the results of the Administrative Performance Skills Scale among the heads of sports talent departments, as assessed by the employees working under their supervision. The researchers employed a descriptive approach utilizing comparative analysis. The research population comprised 453 employees with a minimum of five years of service, while the study sample included 329 participants. The study was conducted across 15 centres in various Iraqi provinces, excluding the Kurdistan region. The findings revealed significant variations among all centres. One of the key conclusions drawn from the study is that there are discernible differences in administrative performance skills among the heads of sports talent departments across the 15 centres, as perceived by their employees. and this achieves one of the sustainable development goals of the United Nations in Iraq which is (Quality Education)
Wearable sensors are a revolutionary tool in agriculture because they collect accurate data on plant environmental conditions that affect plant growth in real-time. Moreover, this technology is crucial in increasing agricultural sustainability and productivity by improving irrigation strategies and water resource management. This review examines the role of wearable sensors in measuring plant water content, leaf and air humidity, stem flow, plant and air temperature, light, and soil moisture sensors. Wearable sensors are designed to monitor various plant physiological parameters in real-time. These data, obtained through wearable sensors, provide information on plant water use and physiology, making our agricultural choices more informed an
... Show MoreThis study was conducted during the period 1/9/2014 – 1/2/2015 and aimed to identify the polymorphisms of IGF-1 gene in broiler chickens and their effects on some biochemical traits. A total of 300 one-day-old broiler chicks (Cobb500, n=150; Hubbard F-15, n=150) were evaluated in this study. Blood samples were individually collected from all birds for DNA extraction. PCR-RFLP method being used for determination the genotypes of IGF-1 gene which then correlated with biochemical traits studied. Cobb500 broilers with TT genotype had significantly (p˂0.05) higher serum triglycerides values than those of TC and CC genotypes. Low density lipoprotein (LDL) were significantly (p˂0.05) higher in Hubbard F-15 broilers with TT genotype than those
... Show MoreTNF-α-induced osteoclastogenesis is central to post-menopausal and inflammatory bone loss, however, the effect of phytoestrogens on TNF-α-induced bone resorption has not been studied. The phytoestrogens genistein, daidzein, and coumestrol directly suppressed TNF-α-induced osteoclastogenesis and bone resorption. TRAP positive osteoclast formation and resorption area were significantly reduced by genistein (10(-7) M), daidzein (10(-5) M), and coumestrol (10(-7) M), which was prevented by the estrogen antagonist ICI 182,780. TRAP expression in mature TNF-α-induced osteoclasts was also significantly reduced by these phytoestrogen concentrations. In addition, in the presence of ICI 182,780 genistein and coumestrol (10(-5) -10(-6) M) augmente
... Show MoreThe investigation of natural convection in an annular space between two concentric cylinders partially filled with metal foam is introduced numerically. The metal foam is inserted with a new suggested design that includes the distribution of metal foam in the annular space, not only in the redial direction, but also with the angular direction. Temperatures of inner and outer cylinders are maintained at constant value in which inner cylinder temperature is higher than the outer one. Naiver Stokes equation with Boussinesq approximation is used for fluid regime while Brinkman-Forchheimer Darcy model used for metal foam. In addition, the local thermal equilibrium condition in the energy e
In this work, the possibility of a multiwavelength mode-locked fiber laser generation based on Four-Wave Mixing (FWM) induced by Fe2O3-SiO2 nanocomposite material is investigated for the first time. A multiwavelength mode-locked pulses fiber laser are generated from Ytterbium–doped fiber laser (YDFL) due to the combined action of high nonlinear absorption and high refractive coefficients of Fe2O3-SiO2 nanocomposite incorporated inside YDFL ring cavity. Up to more than 20 lasing lines in the 1040–1070 nm band with an equally lines separation of ~0.6 nm have been observed by just simple variation of passive modulation of the state of the polarization and the pump power altogether. Moreover, a passively mode-locked operation of YDFL laser
... Show MoreThe gas sensing properties of Co3O4and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.The sensitivity, response time and recovery time to a H2S reducing gas were tested at different operating
... Show More