Polypyrrole (PPy) nanocomposites were prepared using chemical oxidation and were combined with manganese oxide (MnO2) nanoparticles. The PPY-MnO2 nanocomposite was synthesized by integrating PPy nanofibers with varying volume ratio percentages of MnO2 dopant (10, 30, and 50% vol. ratio). The structural features of the PPy and PPy-MnO2 nanocomposite were investigated using X-ray diffraction (XRD). Fourier transfor infrared (FTIR) spectroscopy was used to demonstrate the molecular structures of primary materials and the final product of PPy, MnO2, and PPy- MnO2 nanocomposites. Field Emission Scanning Electron Microscopy (FESEM) showed that the morphology of PPy consisted of a network of nanofibers. Increasing the volume ratios of manganese oxide added to the PPY nanofiber led to the increase of manganese oxide nanoparticles on the surface of the PPY nanofiber network. This resulted in a noticeable alteration in the structure of the nanocomposite. It has been observed that the nanocomposites demonstrate a significant level of pseudocapacitive activity. The highest capacitance of 236 F/g was observed when pure PPy was doped with 30% MnO2 compared to 125 F/g of the pure PPy.
In this work, the study of
Nanocrystalline micro-mesoporous ZSM/MCM-41 composite was synthesized using alkaline treatment method and two step of crystallization in poly tetraflouroethylene (PTFE) lined autoclave. The synthesized zeolites was characterized by X-Ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Atomic force microscopy (AFM), Fourier transport infrared (FTIR), and N2 adsorption-desorption (BET). It was approved that the best results for alkaline leaching can be got with 1.5M NaOH solution. High surface (BET) area of 630 m2/g with pore volume of 0.55 cm3/g has been got. AFM reports showed a nano-level size for average particle size of 50nm.
New compounds of amids [IV]a-e and Schiff bases [V]f-h derived from 2-amino-1,3,4-oxadiazoles [III] were synthesized and characterized by physical and spectraldata.2-Aamino-1,3,4-oxadiazoles was prepared by the action of bromine on acorresponding semicarbazide [II]( which was prepared by reaction of dialdehyde [I]with semicarbazide hydrochloride ) in the presence of sodium acetate , followed byan intramolecular cyclization . (PDF) Synthesis of New Amides and Schiff Bases derived From 2-Amino -1,3,4- Oxadiazole. Available from: https://www.researchgate.net/publication/326679206_Synthesis_of_New_Amides_and_Schiff_Bases_derived_From_2-Amino_-134-_Oxadiazole [accessed Nov 15 2023].
2-(2-amino-5-nitro-phenylazo),-phenol was ready by grouping the diazonium salt of 2-aminophenol with 4-nitroaniline.Thegeometry of azo ligand(HL)was resolved on the origin of (C.H.N) analysis,1H and 13CNMR spectra, infrared spectra and UV–vis electronic absorption spectra. Dealing with the azo ligand produced with Rh+3 and La+3ataqueous ethanol for a 1:3 metal: ligand rate, and in perfect ph. The formation for compounds have been described by utilizing flame atomic, absorption,(C.H.N),Analyses, conductivity, infrared spectra and UV–vis spectral procedures. Nature in the produced compounds, have been studied, obey the ratio of mole and continuous, variance, manners, Beer's law, yielded up a concentration, rate (1×10-4- 3×10-4M),. High
... Show More4-(((4-hydroxy-3,5-dimethoxybenzyl)oxy)methyl)benzoic acid was synthesized from multisteps and converted to their corresponding hydrazide. The corresponding hydrazide was cyclized to their corresponding 5-amino-1,3,4-oxadizole. Newly Schiff bases (7a-7e) were synthesized from reaction the 5-amino-1,3,4-oxadizole with several substituted of 4-hydroxybenzylaldehyde. The resulting compounds were characterized based on their IR, 1H-NMR, 13C-NMR, and HRMS data. 2,2-Diphenyl-1-picrylhydrazide (DPPH) and ferric reducing antioxidant power (FRAP) assays were used to test the antioxidant properties of the synthesized compounds. Compound 7d and 7e exhibited significant free-radical scavenging ability in both assays.
Schiff bases (Sh1-Sh3) have been synthesized (p-aminophenol) was condensed with different aromatic aldehyde in ethanol inthe presence of glacial acetic acid as catalyst. These Schiff bases on treatment with monochloroacetyl choride gave 3-chloro-1-(4-hydroxyphenyl)-4-(substituted)azetidin-2-one(Az4-Az6), with αmercaptoacetic acid gave 3-(4-hydroxyphenyl)-2-( substituted)thiazolidin-4-one (Th7-Th9) and with anthranilic acid gave 3-(4-hydroxyphenyl)-2(substituted)-2,3-dihydroquinazolin-4(1H)-one (Qu10-Qu12). The purity of the derivatives was confirmed by TLC. The some compoundsidentify by (FT-IR and1H, 13C-NMR) data. Some of derivatives were evaluated activity against several microbesto determine ability to inhibit bacterial in some h
... Show MorePathogenic microorganisms are becoming more and more resistant to antimicrobial agents. So the synthesis of new antimicrobial agents is very important. In this work, new 5-fluoroisatin-chalcone conjugates 5(a–g) were synthesized based on previous research that showed the modifications of the isatin moiety led to the synthesis of many derivatives that have antimicrobial activity. 4-aminoacetophenone reacts with 5-fluoroisatin to form Schiff base (3), which in turn reacts with two different groups of aromatic (carbocyclic and heterocyclic) aldehydes 4(a–g) separately to form the final compounds 5(a–g). Proton-nuclear magnetic resonance (¹H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy were used to confirm the chemic
... Show MoreIn this work, copper substituted cobalt ferrite nanoparticles with
chemical formula Co1-xCuxFe2O4 (x=0, 0.3, and 0.7), has been
synthesized via hydrothermal preparation method. The structure of
the prepared materials was characterized by X-ray diffraction (XRD).
The (XRD) patterns showed single phase spinel ferrite structure.
Average crystallite size (D), lattice constant (a), and crystal density
(dx) have been calculated from the most intense peak (311).
Comparative standardization also performed using smaller average
particle size (D) on the XRD patterns of as-prepared ferrite samples
in order to select most convenient hydrothermal synthesis conditions
to get ferrite materials with smallest average particl
Previous studies on the synthesis and characterization of metal chelates with uracil by elemental analysis, conductivity, IR, UV-Vis, NMR spectroscopy, and thermal analysis were covered in this review article. Reviewing these studies, we found that uracil can be coordinated through the electron pair on the N1, N3, O2, or O4 atoms. If the uracil was a mono-dentate ligand, it will be coordinated by one of the following atoms: N1, N3 or O2. But if the uracil was bi-dentate ligand, it will be coordinated by atoms N1 and O2, N3 and O2 or N3 and O4. However, when uracil forms complexes in the form of polymers, coordination occurs through the following atoms: N1 and N3 or N1 and O4.