Polypyrrole (PPy) nanocomposites were prepared using chemical oxidation and were combined with manganese oxide (MnO2) nanoparticles. The PPY-MnO2 nanocomposite was synthesized by integrating PPy nanofibers with varying volume ratio percentages of MnO2 dopant (10, 30, and 50% vol. ratio). The structural features of the PPy and PPy-MnO2 nanocomposite were investigated using X-ray diffraction (XRD). Fourier transfor infrared (FTIR) spectroscopy was used to demonstrate the molecular structures of primary materials and the final product of PPy, MnO2, and PPy- MnO2 nanocomposites. Field Emission Scanning Electron Microscopy (FESEM) showed that the morphology of PPy consisted of a network of nanofibers. Increasing the volume ratios of manganese oxide added to the PPY nanofiber led to the increase of manganese oxide nanoparticles on the surface of the PPY nanofiber network. This resulted in a noticeable alteration in the structure of the nanocomposite. It has been observed that the nanocomposites demonstrate a significant level of pseudocapacitive activity. The highest capacitance of 236 F/g was observed when pure PPy was doped with 30% MnO2 compared to 125 F/g of the pure PPy.
The introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing
Biodiesel can be prepared from various types of vegetable oils or animal fats with the aid of a catalyst.
Calcium oxide (CaO) is one of the prospective heterogeneous catalysts for biodiesel synthesis. Modification
of CaO by impregnation on silica (SiO2) can improve the performance of CaO as catalyst. Egg shells and rice
husks as biomass waste can be used as raw materials for the preparation of the silica modified CaO catalyst.
The present study was directed to synthesize and characterize CaO impregnated SiO2 catalyst from biomass
waste and apply it as catalyst in biodiesel synthesis. The catalyst was synthesized by wet impregnation
method and characterized by x-ray diffraction, x-ray fluorescence, nitr
The study aimed to investigate the employment of electronic supervision applications in developing the teaching performance of teachers in Oman. Based on the qualitative method and the study population consisted of all the teachers of the first cycle in the Governorate of Muscat. The study sample amounted to 24 female teachers. The interview was used as a tool for data collection. The study reached several results, including: There are difficulties in employing electronic supervision applications, which are weak network, density of curricula, lack of experience in applying technology, and the large number of tasks assigned to the teacher. These difficulties can also be overcome by strengthening the network, training teachers, reducing th
... Show MoreThis study specifically contributes to the urgent need for novel methods in Training of Trainers (ToT) programs which can be more effective and efficient through incorporation of AI tools. By exploring scenarios in which AI could be used to dramatically advance trainer preparation, knowledge-sharing, and skill-building across sectors, the research aims to understand the possibility. This study uses a mixed-methods approach, it surveys 500 trainers and conducts in-depth interviews with a further 50 ToT program directors across diverse industries to evaluate the impact of AI-enhanced ToT programs. The results showcase that the use of AI has a substantial positive effect on trainer performance and program outcomes. AI-enhanced ToT programs, fo
... Show MoreThe purpose of this paper is to apply different transportation models in their minimum and maximum values by finding starting basic feasible solution and finding the optimal solution. The requirements of transportation models were presented with one of their applications in the case of minimizing the objective function, which was conducted by the researcher as real data, which took place one month in 2015, in one of the poultry farms for the production of eggs
... Show MoreThin film solar cells are preferable to the researchers and in applications due to the minimum material usage and to the rising of their efficiencies. In particular, thin film solar cells, which are designed based one transition metal chalcogenide materials, paly an essential role in solar energy conversion market. In this paper, transition metals with chalcogenide Nickel selenide termed as (NiSe2/Si) are synthesized. To this end, polycrystalline NiSe2 thin films are deposited through the use of vacuum evaporation technique under vacuum of 2.1x10-5 mbar, which are supplied to different annealing temperatures. The results show that under an annealed temperature of 525 K,
... Show MoreThis work involved the successful synthesis of three new Schiff base complexes, including Ni(II), Mn(II), and Cu(II) complexes. The Schiff base ligand was created by reacting the malonyldihydrazide molecule with naphthaldehyde, and the final step involved reacting the ligand with the corresponding metallic chloride yielding pure target complexes. FTIR, 1 H NMR, 13 C NMR, mass, and UV/Vis spectroscopies were used to comprehensively characterize the produced complexes. These substances have been employed in this study to photo-stabilize polystyrene (PS) and lessen the photo-degradation of its polymeric chains. Several methods, including FTIR, weight loss, viscosity average molecular weight, light and atomic force microscopy, and energy disper
... Show MoreThe increasing demand for energy has encouraged the development of renewable resources and environmentally benign fuel such as biodiesel. In this study, ethyl fatty esters (EFEs), a major component of biodiesel fuel, were synthesized from soybean oil using sodium ethoxide as a catalyst. By-products were glycerol and difatty acyl urea (DFAU), which has biological characteristics, as antibiotics and antifungal medications. Both EFEs and DFAU have been characterized using Fourier transform infrared (FTIR) spectroscopy, and 1H nuclear magnetic resonance (NMR) technique. The optimum conditions were studied as a function of reaction time, reactant molar ratios, catalyst percentage and the effect of organic solvents. The conversion ratio of soybea
... Show More