Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Trees (DT), K-nearest neighbor (KNN), and Logistic Regression (LR), have been used to identify the parameters that allow for effective price estimation. These approaches were tested on a data set of an extensive Indian airline network. When it came to estimating flight prices, the results demonstrate that the Decision tree method is the best conceivable Algorithm for predicting the price of a flight in our particular situation with 89% accuracy. The SGD method had the lowest accuracy, which was 38 %, while the accuracies of the KNN, NB, ADA, and LR algorithms were 69 %, 45 %, and 43 %, respectively. This study's presented methodologies will allow airline firms to predict flight prices more accurately, enhance air travel, and eliminate delay dispersion. Index Terms— Machine learning, Prediction model, Airline price prediction, Software testing,
The presented study investigated the scheduling regarding jobs on a single machine. Each job will be processed with no interruptions and becomes available for the processing at time 0. The aim is finding a processing order with regard to jobs, minimizing total completion time , total late work , and maximal tardiness which is an NP-hard problem. In the theoretical part of the present work, the mathematical formula for the examined problem will be presented, and a sub-problem of the original problem of minimizing the multi-objective functions is introduced. Also, then the importance regarding the dominance rule (DR) that could be applied to the problem to improve good solutions will be shown. While in the practical part, two
... Show MoreThe aim of the research is to:. Preparation and implementation of special educational units using multimedia to learn the skill of scrolling from below. 2 to recognize the impact of the use of multimedia in learning the skill of scrolling from below. 3 to identify the differences between the tests after the two groups research in learning the skill of passing from the bottom volleyball. The research represented the students of the first stage and the sample of the research was drawn randomly and the number of (50) students were divided into two experimental and control groups and each group (25) students were used standardized tests and conducting pre-tests and the implementation of the main exp
... Show MoreAO Dr. Ali Jihad, Journal of Physical Education, 2021
This study aims to employ modern spatial simulation models to predict the future growth of Al-Najaf city for the year 2036 by studying the change in land use for the time period (1986-2016) because of its importance in shaping future policy for the planning process and decision-making process and ensuring a sustainable urban future, using Geographical information software programs and remote sensing (GIS, IDRISI Selva) as they are appropriate tools for exploring spatial temporal changes from the local level to the global scale. The application of the Markov chain model, which is a popular model that calculates the probability of future change based on the past, and the Cellular Automa
Background : Gastroesophageal reflux disease (GERD) is one of chronic gastrointestinal diseases in which patient may be asymptomatic or was complained from heartburn and regurgitation or pulmonary symptoms. Aim of the study : Examine the serum level of sHLA-G in GERD patients and can be used as a biomarker for early detection of GERD disease. Materials and methods : The design of the study was a case- control prospective enrolled forty patients consulted Gastroenterology Unit- Al-Kindy Teaching Hospital, were diagnosed as GERD by their physician, and compared to second forty control healthy group form January-2023 to May-2024. Serum used for quantitative assessment of soluble HLA-G (sHLA-G) using a sandwich enzyme-linked immunosorbent a
... Show MoreHeart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show More<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope
... Show MorePerceived Trust of Stakeholders: Predicting the Use of COBIT 2019 to Reduce Information Asymmetry
This research takes up address the practical side by taking case studies for construction projects that include the various Iraqi governorates, as it includes conducting a field survey to identify the impact of parametric costs on construction projects and compare them with what was reached during the analysis and the extent of their validity and accuracy, as well as adopting the approach of personal interviews to know the reality of the state of construction projects. The results showed, after comparing field data and its measurement in construction projects for the sectors (public and private), the correlation between the expected and actual cost change was (97.8%), and this means that the data can be adopted in the re
... Show MoreHuman interaction technology based on motion capture (MoCap) systems is a vital tool for human kinematics analysis, with applications in clinical settings, animations, and video games. We introduce a new method for analyzing and estimating dorsal spine movement using a MoCap system. The captured data by the MoCap system are processed and analyzed to estimate the motion kinematics of three primary regions; the shoulders, spine, and hips. This work contributes a non-invasive and anatomically guided framework that enables region-specific analysis of spinal motion which could be used as a clinical alternative to invasive measurement techniques. The hierarchy of our model consists of five main levels; motion capture system settings, marker data
... Show More