Preferred Language
Articles
/
whcEUpEBVTCNdQwC3ZTi
A Framework for Predicting Airfare Prices Using Machine Learning
...Show More Authors

Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Trees (DT), K-nearest neighbor (KNN), and Logistic Regression (LR), have been used to identify the parameters that allow for effective price estimation. These approaches were tested on a data set of an extensive Indian airline network. When it came to estimating flight prices, the results demonstrate that the Decision tree method is the best conceivable Algorithm for predicting the price of a flight in our particular situation with 89% accuracy. The SGD method had the lowest accuracy, which was 38 %, while the accuracies of the KNN, NB, ADA, and LR algorithms were 69 %, 45 %, and 43 %, respectively. This study's presented methodologies will allow airline firms to predict flight prices more accurately, enhance air travel, and eliminate delay dispersion. Index Terms— Machine learning, Prediction model, Airline price prediction, Software testing,

Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Non-linear support vector machine classification models using kernel tricks with applications
...Show More Authors

The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample

... Show More
View Publication Preview PDF
Crossref (2)
Scopus Crossref
Publication Date
Thu Nov 03 2022
Journal Name
Sensors
A Novel Application of Deep Learning (Convolutional Neural Network) for Traumatic Spinal Cord Injury Classification Using Automatically Learned Features of EMG Signal
...Show More Authors

In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi

... Show More
View Publication
Scopus (11)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Thu Sep 15 2022
Journal Name
Knowledge And Information Systems
Multiresolution hierarchical support vector machine for classification of large datasets
...Show More Authors

Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Oct 31 2020
Journal Name
Eastern-european Journal Of Enterprise Technologies
Design and development of high-accuracy machine for wire bending
...Show More Authors

View Publication
Scopus (3)
Scopus Crossref
Publication Date
Wed May 01 2024
Journal Name
Scientific Visualization
Shadow Detection and Elimination for Robot and Machine Vision Applications
...Show More Authors

Shadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensit

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Wed Aug 31 2022
Journal Name
Al-kindy College Medical Journal
A Spotlight on the Experience of E-learning as a Learning Method for the Undergraduate Pediatric Nursing Students in Iraq during the COVID-19 Pandemic
...Show More Authors

    The emergence of COVID-19 has resulted in an unprecedented escalation in different aspects of human activities, including medical education. Students and educators across academic institutions have confronted various challenges in following the guidelines of protection against the disease on one hand and accomplishing learning curricula on the other hand. In this short view, we presented our experience in implementing e-learning to the undergraduate nursing students during the present COVID-19 pandemic emphasizing the learning content, barriers, and feedback of students and educators. We hope that this view will trigger the preparedness of nursing faculties in Iraq to deal with this new modality of learning and improve it should t

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jan 15 2002
Journal Name
Abhath Al- Yarmouk [basic Sciences And Engineering]
Computer Program for Predicting Ultimate Strength of Structural Concrete Sections of General Shape
...Show More Authors

Publication Date
Wed Jan 01 2020
Journal Name
Journal Of Building Engineering
Development of gravitational search algorithm model for predicting packing density of cementitious pastes
...Show More Authors

View Publication Preview PDF
Scopus (23)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
New Correlation for Predicting Undersaturated Oil Compressibility for Mishrif Reservoir in the Southern Iraqi Oil Fields
...Show More Authors

Reservoir fluids properties are very important in reservoir engineering computations such as material balance calculations, well testing analyses, reserve estimates, and numerical reservoir simulations. Isothermal oil compressibility is required in fluid flow problems, extension of fluid properties from values at the bubble point pressure to higher pressures of interest and in material balance calculations (Ramey, Spivey, and McCain). Isothermal oil compressibility is a measure of the fractional change in volume as pressure is changed at constant temperature (McCain). The most accurate method for determining the Isothermal oil compressibility is a laboratory PVT analysis; however, the evaluation of exploratory wells often require an esti

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref