Ground-based active optical sensors (GBAOS) have been successfully used in agriculture to predict crop yield potential (YP) early in the season and to improvise N rates for optimal crop yield. However, the models were found weak or inconsistent due to environmental variation especially rainfall. The objectives of the study were to evaluate if GBAOS could predict YP across multiple locations, soil types, cultivation systems, and rainfall differences. This study was carried from 2011 to 2013 on corn (Zea mays L.) in North Dakota, and in 2017 in potatoes in Maine. Six N rates were used on 50 sites in North Dakota and 12 N rates on two sites, one dryland and one irrigated, in Maine. Two active GBAOS used for this study were GreenSeeker and Holland Scientific Crop Circle Sensor ACS 470 (HSCCACS-470) and 430 (HSCCACS-430). Rainfall data, with or without including crop height, improved the YP models in term of reliability and consistency. The polynomial model was relatively better compared to the exponential model. A significant difference in the relationship between sensor reading multiplied by rainfall data and crop yield was observed in terms of soil type, clay and medium textured, and cultivation system, conventional and no-till, respectively, in the North Dakota corn study. The two potato sites in Maine, irrigated and dryland, performed differently in terms of total yield and rainfall data helped to improve sensor YP models. In conclusion, this study strongly advocates the use of rainfall data while using sensor-based N calculator algorithms.
Journal of Theoretical and Applied Information Technology is a peer-reviewed electronic research papers & review papers journal with aim of promoting and publishing original high quality research dealing with theoretical and scientific aspects in all disciplines of IT (Informaiton Technology
Evaporation is one of the major components of the hydrological cycle in the nature, thus its accurate estimation is so important in the planning and management of the irrigation practices and to assess water availability and requirements. The aim of this study is to investigate the ability of fuzzy inference system for estimating monthly pan evaporation form meteorological data. The study has been carried out depending on 261 monthly measurements of each of temperature (T), relative humidity (RH), and wind speed (W) which have been available in Emara meteorological station, southern Iraq. Three different fuzzy models comprising various combinations of monthly climatic variables (temperature, wind speed, and relative humidity) were developed
... Show MoreShear wave velocity is an important feature in the seismic exploration that could be utilized in reservoir development strategy and characterization. Its vital applications in petrophysics, seismic, and geomechanics to predict rock elastic and inelastic properties are essential elements of good stability and fracturing orientation, identification of matrix mineral and gas-bearing formations. However, the shear wave velocity that is usually obtained from core analysis which is an expensive and time-consuming process and dipole sonic imager tool is not commonly available in all wells. In this study, a statistical method is presented to predict shear wave velocity from wireline log data. The model concentrated to predict shear wave velocity fr
... Show MoreThe purpose of this paper is to apply different transportation models in their minimum and maximum values by finding starting basic feasible solution and finding the optimal solution. The requirements of transportation models were presented with one of their applications in the case of minimizing the objective function, which was conducted by the researcher as real data, which took place one month in 2015, in one of the poultry farms for the production of eggs
... Show MoreToday, there are large amounts of geospatial data available on the web such as Google Map (GM), OpenStreetMap (OSM), Flickr service, Wikimapia and others. All of these services called open source geospatial data. Geospatial data from different sources often has variable accuracy due to different data collection methods; therefore data accuracy may not meet the user requirement in varying organization. This paper aims to develop a tool to assess the quality of GM data by comparing it with formal data such as spatial data from Mayoralty of Baghdad (MB). This tool developed by Visual Basic language, and validated on two different study areas in Baghdad / Iraq (Al-Karada and Al- Kadhumiyah). The positional accuracy was asses
... Show MoreThe oil and gas industry relies heavily on IT innovations to manage business processes, but the exponential generation of data has led to concerns about processing big data, generating valuable insights, and making timely decisions. Many companies have adopted Big Data Analytics (BDA) solutions to address these challenges. However, determining the adoption of BDA solutions requires a thorough understanding of the contextual factors influencing these decisions. This research explores these factors using a new Technology-Organisation-Environment (TOE) framework, presenting technological, organisational, and environmental factors. The study used a Delphi research method and seven heterogeneous panelists from an Oman oil and gas company
... Show MoreIn this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 p
... Show MoreIn this work, synthesis of conducting polymeric films namely, PVC thin films was carried out containing Schiff base (L) with Cu2+, Cr3+, Ni2+, Co2+, in addition to inspecting the possibilities of measuring energy gap values of PVC-L-M with variety metal ions. These new polymeric films (PVC-L-M) were characterized by FTIR spectrophotometry, energy gap and surface morphology. The optical data recorded that the band gap values are influenced by the type of metals. All modified films have a red shift in optical properties in the ultraviolet region. The PVC-L-Co(II) was the lowest value of the optical band gap, 3.1 eV.