Background: Successful root canal therapy depends on thorough chemo mechanical debridement of pulpal tissue, dentin debris and infective microorganisms. Objective: This study aimed to investigate the antibacterial effect of silver nanoparticles, sodium hypochlorite and chlorhexidine in reducing the bacterial infection of the root canals. Materials and Methods: The root canals of 55 single-rooted teeth were cleaned, shaped, and sterilized. All the teeth samples were inoculated with Enterococcus faecalis and incubated at 37°C for 2 weeks. Then, the teeth were divided into four groups. Group I (n=15): 100 ppm silver nanoparticles, Group II (n=15): 2.5 sodium hypochlorite, Group III (n=15): 2% chlorhexidine, IV (n=10): Normal saline as a control group. Specimens were incubated for 2 weeks. Paper points were used to obtain pre- and post-irrigation samples so that the colony-forming units were counted. Data were analyzed using SPSS and tested by Shapiro-Wilk test, One-Way ANOVA and Games-Howell test where the level of nϔcanc was set at 0.05. Results: All the tested irrigants showed superior effectiveness compared to the normal saline (p<0.05). Overall, 2.5% sodium hypochlorite presented the most effective action against E. faecalis boϔlmǡ followed by 100 ppm silver nanoparticles, then the 2% chlorhexidine by mean percentage of antibacterial effectiveness of 99.87%, 99.51% and 98.66% respectively. Conclusions: Silver nanoparticles were effective against E. faecalis boϔlm similarly to sodium hypochlorite when it was used as an irrigation solution. Key words: Antibacterial, Chlorhexidine, Enterococcus faecalis, Silver nanoparticles, Sodium hypochlorite
This study conducted an analytical investigation on the behavior of concrete beams with openings reinforced by glass-fiber-reinforced polymer (GFRP) bars. In this study, five proposed beams reinforced by GFRP bars as flexural and shear reinforcement with openings were numerically examined. The variables were the opening orientation (vertical and horizontal) and the number of openings. These openings were located within the flexural zone of the proposed beams. The result shows that the vertical openings had a significant effect over the horizontal openings on reducing the ultimate load and increasing the mid-span deflection compared with the control beam. Moreover, the results showed t
This paper aims to study the effect of circular Y-shaped fin arrangement to improve the low thermal response rates of a double-tube heat exchanger containing Paraffin phase change material (PCM). ANSYS software is employed to perform the computational fluid dynamic (CFD) simulations of the heat exchanger, including fluid flow, heat transfer, and the phase change process. The optimum state of the fin configuration is derived through sensitivity analysis by evaluating the geometrical parameters of the Y-shaped fin. For the same height of the fins (10 mm), the solidification time is reduced by almost 22%, and the discharging rate is enhanced by almost 26% using Y-shaped fins compared with the straight fins. The results demonstrate that the sol
... Show MoreIn the geotechnical and terramechanical engineering applications, precise understandings are yet to be established on the off-road structures interacting with complex soil profiles. Several theoretical and experimental approaches have been used to measure the ultimate bearing capacity of the layered soil, but with a significant level of differences depending on the failure mechanisms assumed. Furthermore, local displacement fields in layered soils are not yet studied well. Here, the bearing capacity of a dense sand layer overlying loose sand beneath a rigid beam is studied under the plain-strain condition. The study employs using digital particle image velocimetry (DPIV) and finite element method (FEM) simulations. In the FEM, an experiment
... Show Moresix specimens of the Hg0.5Pb0.5Ba2Ca2Cu3-y