Necessary and sufficient conditions for the operator equation I AXAX n*, to have a real positive definite solution X are given. Based on these conditions, some properties of the operator A as well as relation between the solutions X andAare given.
The cross section evaluation for (α,n) reaction was calculated according to the available International Atomic Energy Agency (IAEA) and other experimental published data . These cross section are the most recent data , while the well known international libraries like ENDF , JENDL , JEFF , etc. We considered an energy range from threshold to 25 M eV in interval (1 MeV). The average weighted cross sections for all available experimental and theoretical(JENDL) data and for all the considered isotopes was calculated . The cross section of the element is then calculated according to the cross sections of the isotopes of that element taking into account their abundance . A mathematical representative equation for each of the element
... Show MoreRuthenium-Ruthenium and Ruthenium–ligand interactions in the triruthenium "[Ru3(μ-H)(μ3-κ2-Hamphox-N,N)(CO)9]" cluster are studied at DFT level of theory. The topological indices are evaluated in term of QTAIM (quantum theory of atoms in molecule). The computed topological parameters are in agreement with related transition metal complexes documented in the research papers. The QTAIM analysis of the bridged core part, i.e., Ru3H, analysis shows that there is no bond path and bond critical point (chemical bonding) between Ru(2) and Ru(3). Nevertheless, a non-negligible delocalization index for this non-bonding interaction is calculated
... Show MoreWe study the physics of flow due to the interaction between a viscous dipole and boundaries that permit slip. This includes partial and free slip, and interactions near corners. The problem is investigated by using a two relaxation time lattice Boltzmann equation with moment-based boundary conditions. Navier-slip conditions, which involve gradients of the velocity, are formulated and applied locally. The implementation of free-slip conditions with the moment-based approach is discussed. Collision angles of 0°, 30°, and 45° are investigated. Stable simulations are shown for Reynolds numbers between 625 and 10 000 and various slip lengths. Vorticity generation on the wall is shown to be affected by slip length, angle of incidence,
... Show Moreفي هذا البحث نحاول تسليط الضوء على إحدى طرائق تقدير المعلمات الهيكلية لنماذج المعادلات الآنية الخطية والتي تزودنا بتقديرات متسقة تختلف أحيانا عن تلك التي نحصل عليها من أساليب الطرائق التقليدية الأخرى وفق الصيغة العامة لمقدرات K-CLASS. وهذه الطريقة تعرف بطريقة الإمكان الأعظم محدودة المعلومات "LIML" أو طريقة نسبة التباين الصغرى"LVR
... Show MoreThe association of phytoplasma was investigated in symptomatic tomato (
In this work, we study several features of the non-zero divisor graphs (ℵZD- graph) for the ring Zn of integer modulo n. For instance, the clique number, radius, girth, domination number, and the local clustering coefficient are determined. Furthermore, we present an algorithm that calculates the clique number and draws the non-zero divisor for the ring Zn.
In this work, a weighted H lder function that approximates a Jacobi polynomial which solves the second order singular Sturm-Liouville equation is discussed. This is generally equivalent to the Jacobean translations and the moduli of smoothness. This paper aims to focus on improving methods of approximation and finding the upper and lower estimates for the degree of approximation in weighted H lder spaces by modifying the modulus of continuity and smoothness. Moreover, some properties for the moduli of smoothness with direct and inverse results are considered.
Recently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.