The 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and
... Show MoreA fully automatic electrothermal atomic emission spectrometry (ETA-AES) is described. This system is based on an echelle monochromator modified for wave¬length modulation which is completely controlled by microcomputer . The advantages of the system in atomic spectrometry have been discussed . Aspects of the analytical performances such as calibration ? dection limit, precision , and recovery for copper are considered . This system is applied for routine determination of copper in commercial powdered mill? by slurr>' atomization versus aqueous atomization techniques.
Copper oxide nanoparticles (CuO NPs) were synthesized by two methods. The first was chemical method by using copper nitrate Cu (NO3)2 and NaOH, while the second was green method by using Eucalyptus camaldulensis leaves extract and Cu (NO3)2. These methods easily give a large scale production of CuO nanoparticles. X-ray diffraction pattern (XRD) reveals single phase monoclinic structure. The average crystalline size of CuO NPs was measured and used by Scherrer equation which found 44.06nm from chemical method, while the average crystalline size was found from green method was 27.2nm. The morphology analysis using atomic force microscopy showed that the grain size for CuO NPs was synthesized by chemical and green methods were 77.70 and 89.24
... Show MoreBackground: occult blood loss must be considered as a
possible cause in every case of iron deficiency anemia.
Objective: to evaluate upper gastrointestinal endoscopy
in finding a potential cause for iron deficiency anemia
among children in Al-Anbar governorate.
Methods: Twenty five children aged 2-14 years, referred
to the gastroenterology unit in Al-Ramadi General Hospital
for upper gastrointestinal endoscopy had iron deficiency
anemia. Fiberoptic endoscopy was used under general
anesthesia and endoscopic tissue biopsies were taken from
22 patients for histopathological examination.
Results: The main presenting signs and symptoms were
pallor, abdominal pain, and stunting. The upper
gastrointestinal
The green production of iron oxide nanoparticles (FeONPs) due to its numerous biotechnological uses has attracted a lot of attention and clean and eco-friendly approaches in the medical field.
The objectives of this study are to demonstrate the biogenic creation of FeONPs. The search for alternative antimicrobial medicines has been prompted by growing worries about multidrug resistance.
The possibility of using zero-valent iron as permeable reactive barrier in removing lead from a contaminated groundwater was investigated. In the batch tests, the effects of many parameters such as contact time between adsorbate and adsorbent (0-240 min), initial pH of the solution (4-8), sorbent dosage (1-12 g/100 mL), initial metal concentration (50-250 mg/L), and agitation speed
(0-250 rpm) were studied. The results proved that the best values of these parameters achieve the maximum removal efficiency of Pb+2 (=97%) were 2 hr, 5, 5 g/100 mL, 50 mg/L and 200 rpm respectively. The sorption data of Pb+2 ions on the zero-valent iron have been performed well by Langmuir isotherm model in compared with Freundlich model under the studied