Preferred Language
Articles
/
wBYRdIcBVTCNdQwCmktk
In-season potato yield prediction with active optical sensors
...Show More Authors

Crop yield prediction is a critical measurement, especially in the time when parts of the world are suffering from farming issues. Yield forecasting gives an alert regarding economic trading, food production monitoring, and global food security. This research was conducted to investigate whether active optical sensors could be utilized for potato (Solanum tuberosum L.) yield prediction at the mid.le of the growing season. Three potato cultivars (Russet Burbank, Superior, and Shepody) were planted and six rates of N (0, 56, 112, 168, 224, and 280 kg ha−1), ammonium sulfate, which was replaced by ammonium nitrate in the 2nd year, were applied on 11 sites in a randomized complete block design, with four replications. Normalized difference vegetation index (NDVI) and chlorophyll index (CI) measurements were obtained weekly from the active optical sensors, GreenSeeker (GS) and Crop Circle (CC). The 168 kg N ha−1 produced the maximum potato yield. Indices measurements obtained at the 16th and 20th leaf growth stages were significantly correlated with tuber yield. Multiple regression analysis (potato yield as a dependent variable and vegetation indices, NDVI and CI, as independent variables) could make a remarkable improvement to the accuracy of the prediction model and increase the determination coefficient. The exponential and linear models showed a better fit of the data. Soil organic matter content increased the yield significantly but did not affect the prediction models. The 18th and 20th leaf growth stages are the best time to use the sensors for yield prediction.

View Publication
Publication Date
Wed May 03 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Enhancing smart home energy efficiency through accurate load prediction using deep convolutional neural networks
...Show More Authors

The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par

... Show More
View Publication
Crossref
Publication Date
Tue Oct 01 2019
Journal Name
2019 12th International Conference On Developments In Esystems Engineering (dese)
Roadway Deterioration Prediction Using Markov Chain Modeling (Wasit Governorate/ Iraq as a Case Study)
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Dec 23 2011
Journal Name
International Journal Of The Physical Sciences
Fast prediction of power transfer stability index based on radial basis function neural network
...Show More Authors

View Publication
Scopus (16)
Crossref (4)
Scopus Crossref
Publication Date
Tue Dec 19 2017
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Reaction Kinetic of Al- Doura Heavy Naphtha Reforming Process Using Genetic Algorithm
...Show More Authors

In this study, genetic algorithm was used to predict the reaction kinetics of Iraqi heavy naphtha catalytic reforming process located in Al-Doura refinery in Baghdad.  One-dimensional steady state model was derived to describe commercial catalytic reforming unit consisting of four catalytic reforming reactors in series process.

The experimental information (Reformate composition and output temperature) for each four reactors collected at different operating conditions was used to predict the parameters of the proposed kinetic model. The kinetic model involving 24 components, 1 to 11 carbon atoms for paraffins and 6 to 11 carbon atom for naphthenes and aromatics with 71 reactions. The pre-exponential Arrhenius constants and a

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
An Observation and Analysis the role of Convolutional Neural Network towards Lung Cancer Prediction
...Show More Authors

Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Thu Apr 04 2024
Journal Name
Journal Of Electrical Systems
AI-Driven Prediction of Average Per Capita GDP: Exploring Linear and Nonlinear Statistical Techniques
...Show More Authors

Average per capita GDP income is an important economic indicator. Economists use this term to determine the amount of progress or decline in the country's economy. It is also used to determine the order of countries and compare them with each other. Average per capita GDP income was first studied using the Time Series (Box Jenkins method), and the second is linear and non-linear regression; these methods are the most important and most commonly used statistical methods for forecasting because they are flexible and accurate in practice. The comparison is made to determine the best method between the two methods mentioned above using specific statistical criteria. The research found that the best approach is to build a model for predi

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Wed May 31 2023
Journal Name
International Journal Of Sustainable Development And Planning
Prediction of Formal Transformations in City Structure (Kufa as a Model) Based on the Cellular Automation Model and Markov Chains
...Show More Authors

The research utilizes data produced by the Local Urban Management Directorate in Najaf and the imagery data from the Landsat 9 satellite, after being processed by the GIS tool. The research follows a descriptive and analytical approach; we integrated the Markov chain analysis and the cellular automation approach to predict transformations in city structure as a result of changes in land utilization. The research also aims to identify approaches to detect post-classification transformations in order to determine changes in land utilization. To predict the future land utilization in the city of Kufa, and to evaluate data accuracy, we used the Kappa Indicator to determine the potential applicability of the probability matrix that resulted from

... Show More
View Publication
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Engineering
Prediction of the Effect of Using Stone Column in Clayey Soil on the Behavior of Circular Footing by ANN Model
...Show More Authors

Shallow foundations are usually used for structures with light to moderate loads where the soil underneath can carry them. In some cases, soil strength and/or other properties are not adequate and require improvement using one of the ground improvement techniques. Stone column is one of the common improvement techniques in which a column of stone is installed vertically in clayey soils. Stone columns are usually used to increase soil strength and to accelerate soil consolidation by acting as vertical drains. Many researches have been done to estimate the behavior of the improved soil. However, none of them considered the effect of stone column geometry on the behavior of the circular footing. In this research, finite ele

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Mar 31 2024
Journal Name
Iraqi Geological Journal
Permeability Prediction and Facies Distribution for Yamama Reservoir in Faihaa Oil Field: Role of Machine Learning and Cluster Analysis Approach
...Show More Authors

Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F

... Show More
View Publication
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Sat Dec 31 2022
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
EFFECT OF ORGANIC FERTILIZER SOURCRS AND CHEMICL FERTILIZATION ON SOME SOIL PHYSICL TRAITS AND YIELD OF SUMMER SQUASH (Cucurbta Pepo L.): EFFECT OF ORGANIC FERTILIZER SOURCRS AND CHEMICL FERTILIZATION ON SOME SOIL PHYSICL TRAITS AND YIELD OF SUMMER SQUASH (Cucurbta Pepo L.)
...Show More Authors

ABSTRACT

            The results showed that the organic fertilizer mixture (1:1) 30 tons/ha with chemical fertilization recorded the lowest level of bulk density of 1.2 g/cm3, the organic fertilizer mixture (1:1) 30 tons/ha with chemical fertilization recorded the highest percentage of aggregation stability amounting to 16.17%, the organic fertilizer palm fronds recorded the highest level of ready water with an average of 5.50 cm3/cm3 and the organic fertilizer mixture (1:1) 30 tons/ha without chemical fertilization recorded the highest level of ready water as it reached 6.93%, the or

... Show More
View Publication Preview PDF