The use of external posttensioning technique for strengthening reinforced concrete girders has been considerably studied by many researchers worldwide. However, no available data are seen regarding strengthening full-scale composite prestressed concrete girders with external posttensioned technique under static and repeated loading. In this research, four full-scale composite prestressed I-shape girders of 16 m span were fabricated and tested under static and repeated loading up to failure. Accordingly, two girders were externally strengthened with posttensioned strands, while the other two girders were left without strengthening. The experimental tests include deflection, cracking load, ultimate strength and strains at midspan, and loading stages. Test results were compared with the design expressions mentioned in AASHTO LRFD specifications and ACI 318-2014 code. Also, a nonlinear analysis was conducted using the finite element method (FEM). The presented analysis models were verified by comparing the model results with test results. The general theme abstracted from both experimental tests and numerical analysis reflects that the performance and procedure of strengthening with external prestressing of girders were found to be effective in increasing the load carrying capacity of the strengthened girders.
Deep beams are used in wide construction fields such as water tanks, foundations, and girders in multi-story buildings to provide certain areas free of columns. In practice it is quite often occurring to create web opening in deep beams to supply convenient passage of ventilation ducts, cable channels, gas and water pipes. Experimental studies of ten 10 deep beams were carried out, where two of them are control specimens without openings and eight with large web openings in the shear spans. The variables that have been adopted are the ratio of the shear span to the overall depth of the member cross-section, location and dimensions of the opening. Test results showed that there was a decrease in the load carrying capacity of deep bea
... Show MoreHigh performance self-consolidating concrete HP-SCC is one of the most complex types of concrete which have the capacity to consolidated under its own weight, have excellent homogeneity and high durability. This study aims to focus on the possibility of using industrial by-products like Silica fumes SF in the preparation of HP-SCC enhanced with discrete steel fibers (DSF) and monofilament polypropylene fibers (PPF). From experimental results, it was found that using DSF with volume fraction of 0.50 %; a highly improvements were gained in the mechanical properties of HP-SCC. The compressive strength, splitting tensile strength, flexural strength and elastic modulus improved about 65.7 %, 70.5 %, 41.7 % and 80.3 % at 28 days age, respectively
... Show MoreIn this study, six square reinforced concrete flat plates with dimensions of (1500×1500×100) mm were tested under a concentrated load applied on a column located at the center of the slabs. One of these slabs was the control specimen, whereas, in the others, steel angles (steel collars) were used, fixed at the connection region between the slab and the column to investigate the effect of the presence of these collars on punching shear strength. Five thicknesses were used (4, 5, 6, 8, 10mm) with constant legs of angles (75×75) mm of the steel collars to investigate the effects on the punching shear resistance with respect to the control slab. The results of the experimental study show that the punching shear resistance increased b
... Show MoreThe biosorption of lead (II) and chromium (III) onto dead anaerobic biomass (DAB) in single and binary systems has been studied using fixed bed adsorber. A general rate multi- component model (GRM) has been utilized to predict the fixed bed breakthrough curves for single and dual- component system. This model considers both external and internal mass transfer resistances as well as axial dispersion with non-liner multi-component isotherm (Langmuir model). The effects of important parameters, such as flow rate, initial concentration and bed height on the behavior of breakthrough curves have been studied. The equilibrium isotherm model parameters such as maximum uptake capacities for lead (II) and chromium (III) were found to be 35.12 and
... Show MoreIn this paper, the dynamics of scavenger species predation of both susceptible and infected prey at different rates with prey refuge is mathematically proposed and studied. It is supposed that the disease was spread by direct contact between susceptible prey with infected prey described by Holling type-II infection function. The existence, uniqueness, and boundedness of the solution are investigated. The stability constraints of all equilibrium points are determined. In addition to establishing some sufficient conditions for global stability of them by using suitable Lyapunov functions. Finally, these theoretical results are shown and verified with numerical simulations.
To achieve optimal plant growth and production under salt stress, some products were added in adequate quantities to give a good yield, especially bean plants which are sensitive to salinity. For this purpose, this experiment was carried out during the spring growing season in 2022 in Baghdad, to study the effects of humic acid, cytokinin, arginine and their interaction with 9 parameters that reflect the overall traits of vegetative growth and yield of common bean plants Phaseolus vulgaris L. var. Astraid (from MONARCH seeds, China). The factorial design with 3 replicates was used, each with 7 plants treated via foliar spraying or by addition to the soil. The first factor included three groups; H0, H1 and H2 (0, 6, 12 Kg.h-1 H
... Show MoreThe aim of this study is to propose mathematical expressions for estimation of the flexural strength of plain concrete members from ultrasonic pulse velocity (UPV) measurements. More than two hundred pieces of precast concrete kerb units were subjected to a scheduled test program. The tests were divided into two categories; non-destructive ultrasonic and bending or rupture tests. For each precast unit, direct and indirect (surface) ultrasonic pulses were subjected to the concrete media to measure their travel velocities. The results of the tests were monitored in two graphs so that two mathematical relationships can be drawn. Direct pulse velocity versus the flexural strength was given in the first relationship while the second equation des
... Show More