We examine 10 hypothetical patients suffering from some of the symptoms of COVID 19 (modified) using topological concepts on topological spaces created from equality and similarity interactions and our information system. This is determined by the degree of accuracy obtained by weighing the value of the lower and upper figures. In practice, this approach has become clearer.
We present a simple model of charge transfer current through sensitizer N3 molecule contact to TiO2 and ZnO semiconductors to calculate the charge transfer current. The model underlying depends on the fundamental parameters of the charge transfer reaction and it is based on the quantum transition theory approach. A transition energy, driving energy and potential barrier have been taken into account charge transfer current at N3 / TiO2 and N3 / ZnO devices with wide polarity solvents Acetic acid, 2-Methoxyethanol, 1-Butanol, Methyl alcohol, chloroform, N,N-Dimethylacetamide and Ethyl alcohol via the quantum donor-acceptor system.The effects of the transition energy and potential barrier are computed and discussion on charge transfer current.
... Show More(3) (PDF) Theoretical investigation of charge transfer at N3 sensitized molecule dye contact with TiO2 and ZnO semiconductor. Available from: https://www.researchgate.net/publication/362773606_Theoretical_investigation_of_charge_transfer_at_N3_sensitized_molecule_dye_contact_with_TiO2_and_ZnO_semiconductor [accessed May 01 2023].
Background: The restoration of bone continuity and bone union are complex processes, and their success is determined by the effectiveness of osteosynthesis. The use of plants for healing purposes predates human history and forms the source of current modern medicine The aim of this study: It was histological evaluation of effect of topical application of flavonoid on healing of induced bone defect in rabbit tibia. Material and method: Twenty-four Adult New Zealand rabbits used in this study, they were divided into four groups for the healing periods (3days, 1,2, and 4weeks) Two holes were induced in rabbit tibia one on the left side and has been left to heal normally as control. While, the other hole made on the right side filled with flavo
... Show MoreThe prepared nanostructure SiO2 thin films were densified by two techniques (conventional and Diode Pumped Solid State Laser (DPSS) (532 nm). X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), and Atomic Force Microscope (AFM) technique were used to analyze the samples. XRD results showed that the structure of SiO2 thin films was amorphous for both Oven and Laser densification. FESEM and AFM images revealed that the shape of nano silica is spherical and the particle size is in nano range. The small particle size of SiO2 thin film densified by DPSS Laser was (26 nm) , while the smallest particle size of SiO2 thin film densified by Oven was (111 nm).
|
In this work, an experimental investigation has been done for heat transfer by natural-convection through a horizontal concentric annulus with porous media effects. The porous structure in gap spacing consists of a glass balls and replaced by plastic (PVC) balls with different sizes. The outer surface of outer tube is isothermally cooled while the outer surface of inner tube is heated with constant heat flux condition. The inner tube is heated with different supplied electrical power levels. Four different radius ratios of annulus are used. The effects of porous media material, particles size and annulus radius ratio on heat dissipation in terms of average Nusselt number have been analyzed. |
In this work, the geomagnetic storms that occurred during solar cycles 23 and 24 were classified based on the value of the Disturbance Storm Time index (Dst), which was considered an indicator of the strength of geomagnetic conditions. The special criterion of Dst >-50 nT was adopted in the classification process of the geomagnetic storms based on the minimum daily value of the Dst-index. The number of geomagnetic storms that occurred during the study period was counted according to the adopted criteria, including moderate storms with (Dst >-50 nT), strong storms with (Dst >-100 nT), severe storms with (Dst >-200 nT), and great storms with (Dst >-350 nT). The statistica
AA3003-H14 aluminum alloy plates were welded by friction stir welding and TIG welding.
Fatigue properties of the welded joints were evaluated based on the superior tensile properties for
FSW at 1500 rpm rotational speed and 80 mm/min welding speed. However, there is not much
information available on effect of welding parameters with evolution of fatigue life of friction stir
welds. The present study experimentally analyzed fatigue properties for base, FSW, and TIG welds
of AA 3003-H14 aluminum alloy. Fatigue properties of FSW joints were slightly lower than the
base metal and higher than TIG welding.