The development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifespan. This study introduces a novel Seeker Optimization based Energy Aware Clustering Scheme for Underwater Wireless Sensor Networks (SOEACS-UWN). The presented SOEACS-UWN model follows the operation on a collection of solutions named search population (i.e., human team) and considered optimization procedure as a searching process of optimum solutions via human teams. The SOEACS-UWN model constructs a fitness function for effectual CH choices using diverse variables namely distance, residual energy, node degree, centrality, and link quality. The simulation analysis of the SOEACS-UWN model is tested and the outcomes were investigated under diverse aspects. The experimental outcomes demonstrated the supremacy of the SOEACS-UWN model over other approaches.
This paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett
... Show MoreSensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar
... Show MoreWith the development of modern mass media and the prevalence of use continues to both researchers and practitioners their efforts to understand how the media affect Hzha on both the individual and the institutions, society and culture as a whole, which means that the need to develop models and theories explain and predict the effects of the use of such means, therefore, the study of modern technologies of communication and information as an area of research has become mature to establish the intellectual base cohesive, but they are not mature enough, which calls for more research developments therefore become social networking sites online, (Facebook, and YouTube, and straining) known today as the new social media, which is witness
... Show MoreThis work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show MoreCommunity detection is an important and interesting topic for better understanding and analyzing complex network structures. Detecting hidden partitions in complex networks is proven to be an NP-hard problem that may not be accurately resolved using traditional methods. So it is solved using evolutionary computation methods and modeled in the literature as an optimization problem. In recent years, many researchers have directed their research efforts toward addressing the problem of community structure detection by developing different algorithms and making use of single-objective optimization methods. In this study, we have continued that research line by improving the Particle Swarm Optimization (PSO) algorithm using a
... Show MoreThis study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show MoreImage processing applications are currently spreading rapidly in industrial agriculture. The process of sorting agricultural fruits according to their color comes first among many studies conducted in industrial agriculture. Therefore, it is necessary to conduct a study by developing an agricultural crop separator with a low economic cost, however automatically works to increase the effectiveness and efficiency in sorting agricultural crops. In this study, colored pepper fruits were sorted using a Pixy2 camera on the basis of algorithm image analysis, and by using a TCS3200 color sensor on the basis of analyzing the outer surface of the pepper fruits, thus This separation process is done by specifying the pepper according to the color of it
... Show MoreIn this research, Mn-doped TiO2 thin films were grown on glass, Si and OIT/glass substrates by R.F magnetron sputtering technique with thicknesses (250 nm) using TiO2:Mn target under Ar gas pressure and power of 100 Watt. Through the results of X-ray diffraction, the prepared thin films are of the polycrystallization type after the process of annealing at 600°C for two hour The average crystalline size were 145.32, 280.97 and 261.23 nm for (TiO2:Mn) thin film on glass, Si and OIT/glass substrates respectively, while the measured surface roughness is between 0.981nm and 1.14 nm. The fabricated (TiO2:Mn) thin film on glass sensors have high sensitivity for hydrogen( H2 reducing gas) compared to the sensitivity for hydrogen gas on Si and OIT/
... Show More