The development of wireless sensor networks (WSNs) in the underwater environment leads to underwater WSN (UWSN). It has severe impact over the research field due to its extensive and real-time applications. However effective execution of underwater WSNs undergoes several problems. The main concern in the UWSN is sensor nodes’ energy depletion issue. Energy saving and maintaining quality of service (QoS) becomes highly essential for UWASN because of necessity of QoS application and confined sensor nodes (SNs). To overcome this problem, numerous prevailing methods like adaptive data forwarding techniques, QoS-based congestion control approaches, and various methods have been devised with maximum throughput and minimum network lifespan. This study introduces a novel Seeker Optimization based Energy Aware Clustering Scheme for Underwater Wireless Sensor Networks (SOEACS-UWN). The presented SOEACS-UWN model follows the operation on a collection of solutions named search population (i.e., human team) and considered optimization procedure as a searching process of optimum solutions via human teams. The SOEACS-UWN model constructs a fitness function for effectual CH choices using diverse variables namely distance, residual energy, node degree, centrality, and link quality. The simulation analysis of the SOEACS-UWN model is tested and the outcomes were investigated under diverse aspects. The experimental outcomes demonstrated the supremacy of the SOEACS-UWN model over other approaches.
Capillary pressure is a significant parameter in characterizing and modeling petroleum reservoirs. However, costly laboratory measurements may not be sufficiently available in some cases. The problem amplifies for carbonate reservoirs because relatively enormous capillary pressure curves are required for reservoir study due to heterogeneity. In this work, the laboratory measurements of capillary pressure and formation resistivity index were correlated as both parameters are functions of saturation. Forty-one core samples from an Iraqi carbonate reservoir were used to develop the correlation according to the hydraulic flow units concept. Flow zone indicator (FZI) and Pore Geometry and Structure (PGS) approaches were used to identify
... Show MoreOptimum allocation of water for restoration of Iraqi marshes is essential for different related authorities. Abo-Ziriq marsh area about 120 km2 is situated 40 km east of Al-Nassryia city. After comparing the measured annual water qualities with the Iraqi standards for surface water quality evaluation, Abo-Ziriq marsh water quality was in acceptable limit. Hydro balance computation were done for each month by using interface among the HEC-RAS, HEC-GeoRAS and ArcView GIS software and built a number of eco-hydro relationships to simulate the marsh ecosystem by using HEC-EFM program to estimate water allocation adequate for ecosystem requirement and constructs a GIS hydraulic reference map to show inundation area, depth grid and velocity dis
... Show MoreThe development of Japanese society passed through long historical stages and as a result of the bitter experience of Japan in the Second World War and its exhaustion, it was able to build a modern modern state after 1945. Japan is a country of culture, civilization, science and technology, a country that appreciates the value of solidarity work. And the role of active civil society. This is what makes us in Iraq stand and draw their experience in the advancement and development, especially that they also passed bitter political stages, Iraq today passes through the most historical periods of forestry through its historical heritage in terms of the existence of complex social problems, the US occupation of Iraq in 2003 highlighte
... Show MoreDespite the G protein-coupled receptors (GPCRs) being the largest family of signalling proteins at the surface of cells, their potential to be targeted in cancer therapy is still under-utilised. This review highlights the contribution of these receptors to the process of oncogenesis and points to some likely challenges that might be encountered in targeting them. GPCR-signalling pathways are often complex and can be tissue-specific. Cancer cells hijack these communication networks to their proliferative advantage. The role of selected GPCRs in the different hallmarks of cancer is examined to highlight the complexity of targeting these receptors for therapeutic benefit. Our
... Show MoreGiven the importance of increasing economic openness transport companies’ face various issues arising at present time, this required importing different types of goods with different means of transport. Therefore, these companies pay great attention to reducing total costs of transporting commodities by using numbers means of transport methods from their sources to the destinations. The majority of private companies do not acquire the knowledge of using operations research methods, especially transport models, through which the total costs can be reduced, resulting in the importance and need to solve such a problem. This research presents a proposed method for the sum of Total Costs (Tc) of rows and columns, in order to arrive at the init
... Show MoreIn this paper, we investigate the behavior of the bayes estimators, for the scale parameter of the Gompertz distribution under two different loss functions such as, the squared error loss function, the exponential loss function (proposed), based different double prior distributions represented as erlang with inverse levy prior, erlang with non-informative prior, inverse levy with non-informative prior and erlang with chi-square prior.
The simulation method was fulfilled to obtain the results, including the estimated values and the mean square error (MSE) for the scale parameter of the Gompertz distribution, for different cases for the scale parameter of the Gompertz distr
... Show MoreThis paper aims to evaluate the reliability analysis for steel beam which represented by the probability of Failure and reliability index. Monte Carlo Simulation Method (MCSM) and First Order Reliability Method (FORM) will be used to achieve this issue. These methods need two samples for each behavior that want to study; the first sample for resistance (carrying capacity R), and second for load effect (Q) which are parameters for a limit state function. Monte Carlo method has been adopted to generate these samples dependent on the randomness and uncertainties in variables. The variables that consider are beam cross-section dimensions, material property, beam length, yield stress, and applied loads. Matlab software has be
... Show MoreIn this paper, we consider a new approach to solve type of partial differential equation by using coupled Laplace transformation with decomposition method to find the exact solution for non–linear non–homogenous equation with initial conditions. The reliability for suggested approach illustrated by solving model equations such as second order linear and nonlinear Klein–Gordon equation. The application results show the efficiency and ability for suggested approach.
This paper designed a fault tolerance for soft real time distributed system (FTRTDS). This system is designed to be independently on specific mechanisms and facilities of the underlying real time distributed system. It is designed to be distributed on all the computers in the distributed system and controlled by a central unit.
Besides gathering information about a target program spontaneously, it provides information about the target operating system and the target hardware in order to diagnose the fault before occurring, so it can handle the situation before it comes on. And it provides a distributed system with the reactive capability of reconfiguring and reinitializing after the occurrence of a failure.
Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show More