In recent days, the escalating need to seamlessly transfer data traffic without discontinuities across the Internet network has exerted immense pressure on the capacity of these networks. Consequently, this surge in demand has resulted in the disruption of traffic flow continuity. Despite the emergence of intelligent networking technologies such as software-defined networking, network cloudification, and network function virtualization, they still need to improve their performance. Our proposal provides a novel solution to tackle traffic flow continuity by controlling the selected packet header bits (Differentiated Services Code Point (DSCP)) that govern the traffic flow priority. By setting the DSCP bits, we can determine the appropriate precedence level for the data traffic flow. The control and modification of the DSCP bits directly impact the priority assigned to data packets, thereby shaping the traffic flow continuity accordingly. The evaluation and performance analysis of the proposed network were conducted using the Mininet simulator and the MATLAB platform. The outcomes of the comprehensive testing demonstrate that the implementation of our novel priority management technique has successfully reduced queuing delay and minimized packet loss. As a result, the overall data traffic continuity has been significantly enhanced. The obtained results demonstrate that the traffic flow continuity, handled by the Software-Defined Networking (SDN) controller with the support of DSCP modification, has increased by approximately 65% when implementing the proposed priority management based on DSCP bits modification in the SDN network.
The increasing efficiency of the telecommunications network in the city contributes to the increase in spatial interaction between activities (to influence and mutual influence) This study is based on the idea that the upgrading of telephone services provided to citizens are done exclusively through the growth and development of all levels of the service using advanced technologies to know the problems and appropriate solutions in short time and less cost. Thus, crystallized the objectives of the study which was built for the importance of GIS in the planning of services in general, and infrastructure services, in particular, including telephone services, which is represent a point of contact between individuals on the one hand a
... Show MoreColorectal cancer (CRC) is the most common gastrointestinal malignancy and one of the top ten common cancers worldwide with approximately 2 million cases. There are multiple risk factors that could lead to CRC emergence; of which are genetic polymorphisms. Excision repair cross-complementing group 2 (ERCC2) gene encodes for ERCC2 enzyme which plays a crucial role in maintaining genomic integrity by removing DNA adducts. Several studies suggested that there could be a link between genetic polymorphisms of ERCC2 gene and the risk of CRC development. Hence the present study aims to validate the relationship between the following ERCC2 single nucleotide polymorphisms (rs13181, rs149943175, rs530662943, and rs1799790) and CRC susceptibility. A t
... Show MoreThe first flow injection spectrophotometric method is characterized by its speed and sensitivity which have been developed for the determination of promethazine-HCl in pure and pharmaceutical preparation. It is based on the in situ detection of colored cationic radicals formed via oxidation of the drug with sodium persulphate to pinkish-red species and the same species was determined by using homemade Ayah 3SX3-3D solar flow injection photometer. Optimum conditions were obtained by using the high intensive green light emitted diode as a source. Linear dynamic range for the absorbance versus promethazine-HCl concentration was 0-7 mmol.L-1, with the correlation coefficient (r) was 0.9904 while the percentage linearity (r2%) was 98.09%. the L.
... Show MoreThe high mobility group A1 gene (HMGA1) rs139876191 variant has been related to metabolic syndrome and type 2 diabetes, but data are lacking in Middle Eastern populations. The study aimed to assess whether the HMGA1 rs139876191 variant is associated with metabolic syndrome risk and whether this variant predicts the risk of insulin resistance. This case-control study was carried out at single center in Kirkuk city/ Iraq from February to August 2022. Polymorphisms in HMGA1 and genotyping were identified by Sanger sequencing of genomic DNA obtained from 91 Iraqi participants (61 patients with metabolic syndrome and 30 control). Lipid profile, serum (glucose and insulin), glycated hemoglobin, blood pressure, body mass index, and waist circumfer
... Show MoreA new Schiff base ligand Bis-1,4-di[N-3-(2-hydroxy-1-amino)- acetophenonylidene] benzylidene [L] and its complexes with (Mn(II) ,Co(II) ,Ni(II and Cu(II)) were synthesized . The ligand was prepared in two steps. In the first step a solution of (terphthalaldehyde) in methanol reacts under reflux with (p-aminoacetophenone) to give an intermediate compound [1-[3-({4-[(3-Acetyl-phenylimino)-methyl]-benzylidene}-amino)-phenyl]- ethanone which reacts in the second step with (2-Amino-phenol) giving the mentioned ligand. The complexes were synthesized by addition the corresponding metal salt solution to the solution of the ligand in methanol under reflux in (1:1) metal to ligand ratio. On the basis of, molar conductance, I.R., UV-Vis, HPLC, chlorid
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreAerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’A
... Show More