Globally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction information were collected for a specific period and put into a specific data set. That data was used to find the value of energy consumption in the building using artificial intelligence and data analysis. A Python library called Scikit-learn is used to implement machine learning algorithms. In particular, the Multi-layer Perceptron regressor (MLPRegressor) algorithm was used to predict the consumption. The importance of this work lies in predicting the amount of energy consumed. The outcomes of this work can be used to predict the energy consumed by any building before it is built. The used methodology shows the ability to predict energy performance in educational buildings using previous results and train the model on them, and prediction accuracy depends on the amount of data available for the training in artificial intelligence (AI) steps to give the highest accuracy. The prediction was checked using root-mean-square error (RMSE) and coefficient of determination (R²) and we arrived at 0.16 and 0.97 for RMSE and R², respectively.
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreThe current study aims at identifying the impact of using learning acceleration model on the achievement of mathematics for third intermediategrade students. Forachieving this, the researchers chose the School (Al-Kholood Secondary School for Girls) affiliated to the General Directorate of Babylon Education / Hashemite Education Department for the academic year (2021/2021), The sample reached to (70) female students from the third intermediate grade, with (35) female students for each of the two research groups. The two researchers prepared an achievement test consisting of (25) objective items of multiple choice type, The psychometric properties of the test were confirmed, and after the completion of the experiment, the achievement test wa
... Show MoreAbstract
The current research aims at identifying any of the dimensions of organizational learning abilities that are more influential in the knowledge capital of the university and the extent to which they can be applied effectively at Wasit University. The current research dealt with organizational learning abilities as an explanatory variable in four dimensions (Experimentation and openness, sharing and transfer of knowledge, dialogue, interaction with the external environment ), and knowledge capital as a transient variable, with four dimensions (human capital, structural capital, client capital, operational capital). The problem of research is the following questio
... Show MoreBackground: disruptive behavioral disorders among primary school children is oone of the most popular, which has negative social, psychological, educational, and physical repercussions on children and families. Objective: This study sought to determine effect disruptive behavioral disorders quality of learning among school chil dren. Methods: A descriptive cross-sectional design study was conducted at Baquba primary schools in Diyala Governorate, and the study period was extended from October 6th, 2024, to January 15th, 2025. A nonprobability purposive sample was used to include 275 teachers working at selected Baquba primary schools, Iraq. Data were collected using a self-admin istered questionnaire, two components of the st
... Show MoreSome types of the fungus Aspergillus were isolated from some hospitals in the city of Baghdad (Imam Ali Hospital and Sadr General Hospital). The samples were taken by Transport media at a rate of three replicates of each place isolated from samples from different places within the hospital (waste, baths, the sick beds, corridors and room floors) for the purpose of isolating and diagnosing the fungus on the Czapeck Dox Agar media. It was noticed that the spread rate of fungus Aspergillus was 70% compared to other species that have emerged during the isolation process of the Sabouraud's Dextrose Agar media. The species A.niger (56.25%) was considered the most common type of fungus visible during the isolation process of the Imam Ali Hospit
... Show MoreProviding clean water suitable for drinking, agriculture and living organisms is essential in the ecosystem. Therefore, the qualitative assessment of water resources using qualitative indicators is considered one of the most appropriate ways to manage water and develop a regular program for water quality. In this research, 11 sites were used in the Ali Al-Gharbi district in order to evaluate the quality of water in these sites and compare it with international and Iraqi standards and its suitability for drinking. Agriculture, as the results showed that most of the concentrations of the qualitative specifications of the studied characteristics are not suitable for human use and agriculture in the study area.