Preferred Language
Articles
/
vhdwt40BVTCNdQwCuBm_
Applying Scikit-learn of Machine Learning to Predict Consumed Energy in Al-Khwarizmi College of Engineering, Baghdad, Iraq
...Show More Authors

Globally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction information were collected for a specific period and put into a specific data set. That data was used to find the value of energy consumption in the building using artificial intelligence and data analysis. A Python library called Scikit-learn is used to implement machine learning algorithms. In particular, the Multi-layer Perceptron regressor (MLPRegressor) algorithm was used to predict the consumption. The importance of this work lies in predicting the amount of energy consumed. The outcomes of this work can be used to predict the energy consumed by any building before it is built. The used methodology shows the ability to predict energy performance in educational buildings using previous results and train the model on them, and prediction accuracy depends on the amount of data available for the training in artificial intelligence (AI) steps to give the highest accuracy. The prediction was checked using root-mean-square error (RMSE) and coefficient of determination (R²) and we arrived at 0.16 and 0.97 for RMSE and R², respectively.

Publication Date
Mon Aug 30 2021
Journal Name
Al-kindy College Medical Journal
Serum Biomarkers are Promising Tools to Predict Traumatic Brain Injury Outcome
...Show More Authors

Traumatic Brain Injury (TBI) is still considered a worldwide leading cause of mortality and morbidity. Within the last decades, different modalities were used to assess severity and outcome including Glasgow Coma Scale (GCS), imaging modalities, and even genetic polymorphism, however, determining the prognosis of TBI victims is still challenging requiring the emerging of more accurate and more applicable tools to surrogate other old modalities

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Mar 01 2024
Journal Name
International Journal Of Medical Informatics
An artificial intelligence approach to predict infants’ health status at birth
...Show More Authors

View Publication
Scopus (10)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Fri Aug 13 2021
Journal Name
Neural Computing And Applications
Integration of extreme gradient boosting feature selection approach with machine learning models: application of weather relative humidity prediction
...Show More Authors

View Publication
Scopus (67)
Crossref (58)
Scopus Clarivate Crossref
Publication Date
Thu Oct 29 2020
Journal Name
Complexity
Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting
...Show More Authors

The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s

... Show More
View Publication
Scopus (57)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (6)
Scopus Crossref
Publication Date
Sun Mar 05 2017
Journal Name
Baghdad Science Journal
Screening of Epiphytic Algae on the Aquatic Plant Phragmites australis inhabiting Tigris River in Al-Jadria Site, Baghdad, Iraq
...Show More Authors

The present work included qualitative study of epiphytic algae on dead and living stems, leaves of the aquatic plant Phragmitesaustralis Trin ex Stand, in Tigris River in AL- Jadria Site in Baghdad during Autumn 2014, Winter 2015, Spring 2015, and Summer 2015. The physical and chemical parameters of River’s water were studied (water temperature, pH, electric conductivity, Salinity, TSS, TDS, turbidity, light intensity, dissolve oxygen, BOD5, alkalinity, total hardness, calcium, magnesium and plant nutrient). A total of 142 isolates of epiphytic algae were identified. Diatoms were dominant by 117 isolates followed by Cyanobacteria (13isolates), Chlorophyta (11 isolates) and Rhodophyta (1 isolate), Variations in the isolates number were rec

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (3)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
The Egyptian Journal Of Hospital Medicine
Effect of Good Hygiene Practices on E. coli O157:H7 Contamination in Some Al-‎Karkh Area Restaurants, Baghdad, Iraq
...Show More Authors

View Publication
Crossref
Publication Date
Fri Jun 30 2023
Journal Name
College Of Islamic Sciences
The strategy of applying quality indicators to educational outcomes according to market requirements - a fundamental study
...Show More Authors

 

A research study in which a methodology for quality indicators that can be adopted to evaluate the educational process in educational institutions within a specific strategy helps individuals in charge of educational education to make appropriate decisions based on accurate and properly approved plans to achieve successful outcomes.

These indicators can be used to judge the quality of educational institutions in order to improve, improve and develop them. This study has concluded the necessity of putting quality into actual application in order to benefit from it in evaluating the future action of Iraqi educational institutions.

The external changes brought about by technology and family life have made the

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Modified Grid Clustering Technique to Predict Heat Transfer Coefficient in a Duct of Arbitrary Cross Section Area
...Show More Authors

A simple straightforward mathematical method has been developed to cluster grid nodes on a boundary segment of an arbitrary geometry that can be fitted by a relevant polynomial. The method of solution is accomplished in two steps. At the first step, the length of the boundary segment is evaluated by using the mean value theorem, then grids are clustered as desired, using relevant linear clustering functions. At the second step, as the coordinates cell nodes have been computed and the incremental distance between each two nodes has been evaluated, the original coordinate of each node is then computed utilizing the same fitted polynomial with the mean value theorem but reversibly.

The method is utilized to predict

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Using Artificial Neural Network to Predict Rate of Penetration from Dynamic Elastic Properties in Nasiriya Oil Field
...Show More Authors

   The time spent in drilling ahead is usually a significant portion of total well cost. Drilling is an expensive operation including the cost of equipment and material used during the penetration of rock plus crew efforts in order to finish the well without serious problems. Knowing the rate of penetration should help in speculation of the cost and lead to optimize drilling outgoings. Ten wells in the Nasiriya oil field have been selected based on the availability of the data. Dynamic elastic properties of Mishrif formation in the selected wells were determined by using Interactive Petrophysics (IP V3.5) software based on the las files and log record provided. The average rate of penetration and average dynamic elastic propert

... Show More
View Publication Preview PDF
Crossref