Artificial intelligence techniques are reaching us in several forms, some of which are useful but can be exploited in a way that harms us. One of these forms is called deepfakes. Deepfakes is used to completely modify video (or image) content to display something that was not in it originally. The danger of deepfake technology impact on society through the loss of confidence in everything is published. Therefore, in this paper, we focus on deepfakedetection technology from the view of two concepts which are deep learning and forensic tools. The purpose of this survey is to give the reader a deeper overview of i) the environment of deepfake creation and detection, ii) how deep learning and forensic tools contributed to the detection of deepfakes, and iii) finally how in the future incorporating both deep learning technology and tools for forensics can increase the efficiency of deepfakes detection.
The ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade devices that can be used in various application domains such as gaming, education. This article discusses the parts in which the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form of communi
... Show MoreChurning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show MoreE-learning applications according to the levels of enlightenment (STEM Literacy) for physics teachers in the secondary stage. The sample consists of (400) teachers, at a rate of (200) males (50%), and (200)females (50%), distributed over (6) directorates of education in Baghdad governorate on both sides of Rusafa and Karkh. To verify the research goals, the researcher built a scale of e-learning applications according to the levels of STEM Literacy, which consists of (50) items distributed over (5) levels. The face validity of the scale and its stability were verified by extracting the stability coefficient through the internal consistency method “Alf-Cronbach”. The following statistical means were used: Pearson correlation coefficient,
... Show MoreThe progress of science in all its branches and levels made great civilized changes of
our societies in the present day, it's a result of the huge amount of knowledge, the increase of
number of students, and the increase of community awareness proportion of the importance of
education in schools and universities, it became necessary for us as educators to look at
science from another point of view based on the idea of scientific development of curricula
and teaching methods and means of education, and for the studying class environment as a
whole, by computer and internet use in education to the emergence of the term education
technology, which relies on the use of modern technology to provide educational content to<
The current research aims to reveal the strength of education and the direction of the relationship between the formal thinking and learning methods of Kindergarten department students. To achieve this objective, the researcher developed a scale of formal thinking according to the theory of (Inhelder & Piaget 1958) consisting of (25) items in the form of declarative phrases derived from the analysis of formal thinking skills based on a professional situation that students are expected to interact with in a professional way. The research sample consisted of (100) female students selected randomly who were divided into four groups based on the academic stages, the results revealed that The level of formal thinking of the main sample is
... Show MoreSelf-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin
... Show MoreThe study aimed to reveal the level of knowledge and tendencies of high- study students specializing in curriculum and teaching methods at King Khalid University towards harmonious strategies with brain-based learning (BBL). And Then, putting a proposed concept to develop knowledge and tendencies of high-study students specializing in curriculum and teaching methods at King Khalid University towards harmonious strategies with Brain-based learning (BBL). For achieving this goal, a cognitive test and a scale of tendency were prepared to apply harmonious strategies with brain-based learning. The descriptive approach was used because it suits the goals of the study. The study sample consisted of (70) male and female students of postgraduate
... Show MoreWith the vast usage of network services, Security became an important issue for all network types. Various techniques emerged to grant network security; among them is Network Intrusion Detection System (NIDS). Many extant NIDSs actively work against various intrusions, but there are still a number of performance issues including high false alarm rates, and numerous undetected attacks. To keep up with these attacks, some of the academic researchers turned towards machine learning (ML) techniques to create software that automatically predict intrusive and abnormal traffic, another approach is to utilize ML algorithms in enhancing Traditional NIDSs which is a more feasible solution since they are widely spread. To upgrade t
... Show More