The increasing complexity of assaults necessitates the use of innovative intrusion detection systems (IDS) to safeguard critical assets and data. There is a higher risk of cyberattacks like data breaches and unauthorised access since cloud services have been used more frequently. The project's goal is to find out how Artificial Intelligence (AI) could enhance the IDS's ability to identify and classify network traffic and identify anomalous activities. Online dangers could be identified with IDS. An intrusion detection system, or IDS, is required to keep networks secure. We must create efficient IDS for the cloud platform as well, since it is constantly growing and permeating more aspects of our daily life. However, using standard intrusion detection systems in the cloud may provide challenges. The pre-established IDS design may overburden a cloud segment due to the additional detection overhead. Within the framework of an adaptively designed networked system. We demonstrate how to fully use available resources without placing undue load on any one cloud server using an intrusion detection system (IDS) based on neural networks. To even more successfully detect new threats, the suggested IDS make use of neural network machine learning (ML).
The present research aims to design an electronic system based on cloud computing to develop electronic tasks for students of the University of Mosul. Achieving this goal required designing an electronic system that includes all theoretical information, applied procedures, instructions, orders for computer programs, and identifying its effectiveness in developing Electronic tasks for students of the University of Mosul. Accordingly, the researchers formulated three hypotheses related to the cognitive and performance aspects of the electronic tasks. To verify the research hypotheses, a sample of (91) students is intentionally chosen from the research community, represented by the students of the college of education for humanities and col
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreRecently, all over the world mechanism of cloud computing is widely acceptable and used by most of the enterprise businesses in order increase their productivity. However there are still some concerns about the security provided by the cloud environment are raises. Thus in this our research project, we are discussing over the cloud computing paradigm evolvement for the large business applications like CRM as well as introducing the new framework for the secure cloud computing using the method of IT auditing. In this case our approach is basically directed towards the establishment of the cloud computing framework for the CRM applications with the use of checklists by following the data flow of the CRM application and its lifecycle. Those ch
... Show MoreINTRODUCTION: A range of tools and technologies are at disposal for the purpose of defect detection. These include but are not limited to sensors, Statistical Process Control (SPC) software, Artificial Intelligence (AI) and machine learning (ML) algorithms, X-ray systems, ultrasound systems, and eddy current systems. OBJECTIVES: The determination of the suitable instrument or combination of instruments is contingent upon the precise production procedure and the category of flaw being identified. In certain cases, defects may necessitate real-time monitoring and analysis through the use of sensors and SPC software, whereas more comprehensive analysis may be required for other defects through the utilization of X-ray or ultrasound sy
... Show MoreA Tonido cloud server provides a private cloud storage solution and synchronizes customers and employees with the required cloud services over the enterprise. Generally, access to any cloud services by users is via the Internet connection, which can face some problems, and then users may encounter in accessing these services due to a weak Internet connection or heavy load sometimes especially with live video streaming applications overcloud. In this work, flexible and inexpensive proposed accessing methods are submitted and implemented concerning real-time applications that enable users to access cloud services locally and regionally. Practically, to simulate our network connection, we proposed to use the Raspberry-pi3 m
... Show MoreAs we live in the era of the fourth technological revolution, it has become necessary to use artificial intelligence to generate electric power through sustainable solar energy, especially in Iraq and what it has gone through in terms of crises and what it suffers from a severe shortage of electric power because of the wars and calamities it went through. During that period of time, its impact is still evident in all aspects of daily life experienced by Iraqis because of the remnants of wars, siege, terrorism, wrong policies ruling before and later, regional interventions and their consequences, such as the destruction of electric power stations and the population increase, which must be followed by an increase in electric power stations,
... Show MoreThe rise of edge-cloud continuum computing is a result of the growing significance of edge computing, which has become a complementary or substitute option for traditional cloud services. The convergence of networking and computers presents a notable challenge due to their distinct historical development. Task scheduling is a major challenge in the context of edge-cloud continuum computing. The selection of the execution location of tasks, is crucial in meeting the quality-of-service (QoS) requirements of applications. An efficient scheduling strategy for distributing workloads among virtual machines in the edge-cloud continuum data center is mandatory to ensure the fulfilment of QoS requirements for both customer and service provider. E
... Show MorePlagiarism is becoming more of a problem in academics. It’s made worse by the ease with which a wide range of resources can be found on the internet, as well as the ease with which they can be copied and pasted. It is academic theft since the perpetrator has ”taken” and presented the work of others as his or her own. Manual detection of plagiarism by a human being is difficult, imprecise, and time-consuming because it is difficult for anyone to compare their work to current data. Plagiarism is a big problem in higher education, and it can happen on any topic. Plagiarism detection has been studied in many scientific articles, and methods for recognition have been created utilizing the Plagiarism analysis, Authorship identification, and
... Show MoreFree Space Optical (FSO) technology offers highly directional, high bandwidth communication channels. This technology can provide fiber-like data rate over short distances. In order to improve security associated with data transmission in FSO networks, a secure communication method based on chaotic technique is presented. In this paper, we have turned our focus on a specific class of piece wise linear one-dimensional chaotic maps. Simulation results indicate that this approach has the advantage of possessing excellent correlation property. In this paper we examine the security vulnerabilities of single FSO links and propose a solution to this problem by implementing the chaotic signal generator “reconfigurable tent map”. As synchronizat
... Show More