The increasing complexity of assaults necessitates the use of innovative intrusion detection systems (IDS) to safeguard critical assets and data. There is a higher risk of cyberattacks like data breaches and unauthorised access since cloud services have been used more frequently. The project's goal is to find out how Artificial Intelligence (AI) could enhance the IDS's ability to identify and classify network traffic and identify anomalous activities. Online dangers could be identified with IDS. An intrusion detection system, or IDS, is required to keep networks secure. We must create efficient IDS for the cloud platform as well, since it is constantly growing and permeating more aspects of our daily life. However, using standard intrusion detection systems in the cloud may provide challenges. The pre-established IDS design may overburden a cloud segment due to the additional detection overhead. Within the framework of an adaptively designed networked system. We demonstrate how to fully use available resources without placing undue load on any one cloud server using an intrusion detection system (IDS) based on neural networks. To even more successfully detect new threats, the suggested IDS make use of neural network machine learning (ML).
Image pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOM
... Show MoreSecurity reflects a permanent and complex movement that complies with international and societal needs and developments in all its dimensions, interactions and levels. To constitute a universal demand for all States, communities and individuals. The question of security is one of the most important motivations and motivations that govern the behavior, and even the objectives of those societies and States. These groups or individuals have always sought to avoid fear and harm, and to provide stability, safety and security. In the light of this, security studies have been among the important fields of study in the field of international and strategic relations. The field witnessed many theoretical efforts, from the traditional perspective,
... Show MoreThe use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show MoreCloud storage provides scalable and low cost resources featuring economies of scale based on cross-user architecture. As the amount of data outsourced grows explosively, data deduplication, a technique that eliminates data redundancy, becomes essential. The most important cloud service is data storage. In order to protect the privacy of data owner, data are stored in cloud in an encrypted form. However, encrypted data introduce new challenges for cloud data deduplication, which becomes crucial for data storage. Traditional deduplication schemes cannot work on encrypted data. Existing solutions of encrypted data deduplication suffer from security weakness. This paper proposes a combined compressive sensing and video deduplication to maximize
... Show MoreIn recent years, the migration of the computational workload to computational clouds has attracted intruders to target and exploit cloud networks internally and externally. The investigation of such hazardous network attacks in the cloud network requires comprehensive network forensics methods (NFM) to identify the source of the attack. However, cloud computing lacks NFM to identify the network attacks that affect various cloud resources by disseminating through cloud networks. In this paper, the study is motivated by the need to find the applicability of current (C-NFMs) for cloud networks of the cloud computing. The applicability is evaluated based on strengths, weaknesses, opportunities, and threats (SWOT) to outlook the cloud network. T
... Show MoreIn recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the road in all the sections of the country. Vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the developing system is consist of three phases, vehicle license plate localization, character segmentation, and character recognition, the License Plate (LP) detection is presented using canny
... Show MoreThe concealment of data has emerged as an area of deep and wide interest in research that endeavours to conceal data in a covert and stealth manner, to avoid detection through the embedment of the secret data into cover images that appear inconspicuous. These cover images may be in the format of images or videos used for concealment of the messages, yet still retaining the quality visually. Over the past ten years, there have been numerous researches on varying steganographic methods related to images, that emphasised on payload and the quality of the image. Nevertheless, a compromise exists between the two indicators and to mediate a more favourable reconciliation for this duo is a daunting and problematic task. Additionally, the current
... Show More