Intrusion detection systems (IDS) are useful tools that help security administrators in the developing task to secure the network and alert in any possible harmful event. IDS can be classified either as misuse or anomaly, depending on the detection methodology. Where Misuse IDS can recognize the known attack based on their signatures, the main disadvantage of these systems is that they cannot detect new attacks. At the same time, the anomaly IDS depends on normal behaviour, where the main advantage of this system is its ability to discover new attacks. On the other hand, the main drawback of anomaly IDS is high false alarm rate results. Therefore, a hybrid IDS is a combination of misuse and anomaly and acts as a solution to overcome the disadvantages of these two methods. In this paper, a new hybrid IDS is proposed based on the RNA encoding idea and applying the K-means clustering algorithm. Firstly, choosing random records for both training and testing. Secondly, propose RNA encoding by calculating all possible record values within dataset and generating RNA characters for each value, then dividing it into blocks. The third step is done by searching and extracting normal keys based on the most repeated blocks, and the same procedure is applied to extract the attack keys. Finally, the Kmeans clustering method is used to classify the testing records based on extracted keys. The proposed method is evaluated by calculating the detection rate (DR), false alarm rate (FAR), and accuracy, where the achieved DR, FAR, and accuracy are equal to 91.13%, 0.46%, and 92.02% respectively. Based on the achieved results, it can be said that the proposed hybrid IDS has high DR and accuracy results, can detect new attacks, and can solve the problem of anomaly IDS by getting a low false alarm rate result.
In this paper a new method is proposed to perform the N-Radon orthogonal frequency division multiplexing (OFDM), which are equivalent to 4-quadrature amplitude modulation (QAM), 16-QAM, 64-QAM, 256-QAM, ... etc. in spectral efficiency. This non conventional method is proposed in order to reduce the constellation energy and increase spectral efficiency. The proposed method gives a significant improvement in Bit Error Rate performance, and keeps bandwidth efficiency and spectrum shape as good as conventional Fast Fourier Transform based OFDM. The new structure was tested and compared with conventional OFDM for Additive White Gaussian Noise, flat, and multi-path selective fading channels. Simulation tests were generated for different channels
... Show MoreDue to restrictions and limitations on agricultural water worldwide, one of the most effective ways to conserve water in this sector is to reduce the water losses and improve irrigation uniformity. Nowadays, the low-pressure sprinkler has been widely used to replace the high-pressure impact sprinklers in lateral move sprinkler irrigation systems due to its low operating cost and high efficiency. However, the hazard of surface runoff represents the biggest obstacle for low-pressure sprinkler systems. Most researchers have used the pulsing technique to apply variable-rate irrigation to match the crop water needs within a normal application rate that does not produce runoff. This research introduces a variable pulsed irrigation algorit
... Show MoreA simple setup of random number generator is proposed. The random number generation is based on the shot-noise fluctuations in a p-i-n photodiode. These fluctuations that are defined as shot noise are based on a stationary random process whose statistical properties reflect Poisson statistics associated with photon streams. It has its origin in the quantum nature of light and it is related to vacuum fluctuations. Two photodiodes were used and their shot noise fluctuations were subtracted. The difference was applied to a comparator to obtain the random sequence.
Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreThis paper aims to build a modern vision for Islamic banks to ensure sustainability and growth, as well it aims to highlight the positive Iraqi steps in the Islamic banking sector. In order to build this vision, several scientific research approaches were adopted (quantitative, descriptive analytical, descriptive). As for the research community, it was for all the Iraqi private commercial banks, including Islamic banks. The research samples varied according to a diversity of the methods and the data availability. A questionnaire was constructed and conducted, measuring internal and external honesty. 50 questionnaires were distributed to Iraqi academic specialized in Islamic banking. All distributed forms were subject to a thorough analys
... Show MoreAlthough its wide utilization in microbial cultures, the one factor-at-a-time method, failed to find the true optimum, this is due to the interaction between optimized parameters which is not taken into account. Therefore, in order to find the true optimum conditions, it is necessary to repeat the one factor-at-a-time method in many sequential experimental runs, which is extremely time-consuming and expensive for many variables. This work is an attempt to enhance bioactive yellow pigment production by Streptomyces thinghirensis based on a statistical design. The yellow pigment demonstrated inhibitory effects against Escherichia coli and Staphylococcus aureus and was characterized by UV-vis spectroscopy which showed lambda maximum of
... Show MorePolarization manipulation elements operating at visible wavelengths represent a critical component of quantum communication sub-systems, equivalent to their telecom wavelength counterparts. The method proposed involves rotating the optic axis of the polarized input light by an angle of 45 degree, thereby converting the fundamental transverse electric (TE0) mode to the fundamental transverse magnetic (TM0) mode. This paper outlines an integrated gallium phosphide-waveguide polarization rotator, which relies on the rotation of a horizontal slot by 45 degree at a wavelength of 700 nm. This will ultimately lead to the conception of a mode hybridization phenomeno
Refractive indices (nD), viscosities (η) and densities (r) were deliberated for the binary mixtures created by dipropyl amine with 1-octanol, 1-heptanol, 1-hexanol, 1-pentanol and tert-pentyl alcohol at temperature 298.15 K over the perfect installation extent. The function of Redlich-Kister were used to calculate and renovated of the refractive index deviations (∆nD), viscosity deviations (ηE), excess molar Gibbs free energy (∆G*E) and excess molar volumes(Vm E). The standard errors and coefficients were respected by this function. The values of ∆nD, ηE, Vm E and ∆G*E were plotted against mole fraction of dipropyl amine. In all cases the obtained ηE, ∆G*E, Vm E and ∆nD values were negative at 298.15K. Effect of carbon atoms
... Show More