Nitrogen (N) fertilizer rate is important for high yield and good quality of potato tubers. In this dissertation, I seek to study the response of different potato cultivars under different N fertilizer rates and how that can impact tuber quality, examine the performance of active optical sensors in improving a potato yield prediction algorithm, and evaluate the ability of active optical sensors (GreenSeeker (GS) and Crop Circle (CC)) to optimize a N recommendation algorithm that can be used by potato growers in Maine. This research was conducted at 11 sites over a period of two years (2018–2019) in Aroostook County, Maine; all sites depended on a rainfed system. Three potato cultivars, Russet Burbank, Superior, and Shepody, were planted under six rates of N (0-280 kg ha-1), ammonium sulfate and ammonium nitrate, and were applied in a randomized complete block design (RCBD) with four replications. Active optical sensor readings (normalized difference vegetation index (NDVI)) were collected weekly after the fourth leaf stage began. The coefficient of determination (R2) between soil organic matter (OM) content and total tuber yield for all sites combined was 0.78**. Sites with ≥ 30 g kg-1 of soil OM produced higher total tuber yield, marketable yield, and tuber weight per plant (39.45%, 45.22%, and 54.94%, respectively) than sites with ≤ 30 g kg-1 of OM. Specific gravity increased by 0.18% in the sites with ≥ 30 g kg-1 of OM. The total tuber yield for the three cultivars was maximized at 168 kg N ha-1. Vegetation indices measurements obtained at stages of 16 or 20 fully expanded leaves were significantly correlated with tuber yield, which can be used in the yield prediction model. Sensor measurements obtained at the 20th leaf stage were significantly correlated with tuber yield, with the exponential model showing the best fit for the regression curve. The recommended N rate calculated based on in-season sensor readings was reduced by approximately 12–14% compared to the total N rate that growers currently apply based on the conventional approach.
In this paper the effect of nonthermal atmospheric argon plasma on the optical properties of the cadmium oxide CdO thin films prepared by chemical spray pyrolysis was studied. The prepared films were exposed to different time intervals (0, 5, 10, 15, 20) min. For every sample, the transmittance, Absorbance, absorption coefficient, energy gap, extinction coefficient and dielectric constant were studied. It is found that the transmittance and the energy gap increased with exposure time, and absorption. Absorption coefficient, extinction coefficient, dielectric constant decreased with time of exposure to the argon plasma
In this study, high quality ZnO/Ag-NPs thin transparent and conductive film coatings were fabricated
Zinc Oxide (ZnO) thin films of different thickness were prepared
on ultrasonically cleaned corning glass substrate, by pulsed laser
deposition technique (PLD) at room temperature. Since most
application of ZnO thin film are certainly related to its optical
properties, so the optical properties of ZnO thin film in the
wavelength range (300-1100) nm were studied, it was observed that
all ZnO films have high transmittance (˃ 80 %) in the wavelength
region (400-1100) nm and it increase as the film thickness increase,
using the optical transmittance to calculate optical energy gap (Eg
opt)
show that (Eg
opt) of a direct allowed transition and its value nearly
constant (~ 3.2 eV) for all film thickness (150
The annealing temperature (200–500 °C) effects of optical frequency response on the dielectric functions of sol–gel derived CuCoO
In this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these measurement
... Show More