Highly Modified Asphalt (HiMA) binders have garnered significant attention due to their superior resistance to rutting, fatigue cracking, and thermal distress under heavy traffic loads and extreme environmental conditions. While elastomeric polymers such as Styrene- Butadiene-Styrene (SBS) have been extensively used in HiMA applications, the potential of plastomeric polymers, including Polyethylene (PE) and Ethylene Vinyl Acetate (EVA), remains largely unexplored. This study aims to evaluate the performance of reference binder (RB) modified with plastomeric HiMA asphalt in comparison to SBS-modified binders and determine the optimal polymer dosage for achieving an optimal balance between rutting resistance and fatigue durability. The experimental program involved modifying a base asphalt binder with SBS, PE, and EVA at dosages of 6%, 7%, and 8% by weight of binder. A comprehensive evaluation was conducted, including conventional tests (penetration, softening point, viscosity, mass loss, storage stability, and specific gravity) and rheological characterization using the Dynamic Shear Rheometer (DSR). The Multiple Stress Creep Recovery (MSCR) test was employed to assess high-temperature performance, while the Linear Amplitude Sweep (LAS) test evaluated fatigue behavior. Additionally, an Overall Desirability (OD) analysis was performed to integrate multiple performance criteria and establish a ranking for each modification. The results demonstrated that SBS-modified binders exhibited the most balanced performance, with SBS8 achieving the highest elastic recovery (52.87%) and superior fatigue life, exceeding 1,017,904 cycles at 2.5% strain. PE8 exhibited exceptional rutting resistance, reaching the lowest Jnr 3.2 value (0.0078 kPa−1); however, its limited elasticity (15.7% recovery) indicated reduced flexibility. EVA modifications demonstrated marginal improvements in fatigue resistance but failed to meet the AASHTO M332 criteria for high-traffic applications. The OD analysis ranked SBS8 as the most effective HiMA binder (OD score = 0.715), followed by SBS7 (0.588) and SBS6 (0.509). PE7 (0.354) and PE6 (0.337) demonstrated moderate performance, whereas EVA had the lowest desirability score (0.000). Based on these findings, SBS-modified binders are recommended for applications requiring a balance between fatigue and rutting resistance, whereas PE-based HiMA is more suitable for high-temperature regions where rutting is the primary concern. Further field studies are necessary to validate the long-term durability of plastomeric HiMA binders and optimize their use for specific pavement conditions.
To enhance interfacial bonding between carbon fibers and epoxy matrix, the carbon fibers have been modified with multiwall carbon nanotubes (MWCNTs) using the dip- coating technique. FT-IR spectrum of the MWCNTs shows a peak at 1640 cm−1 corresponding to the stretching mode of the C=C double bond which forms the framework of the carbon nanotube sidewall. The broad peak at 3430 cm−1 is due to O–H stretching vibration of hydroxyl groups and the peak at 1712 cm−1 corresponds to the carboxylic (C=O) group attached to the carbon fiber. The peaks at 2927 cm−1 and 2862 cm−1 ar
A new pavement technology has been developed in Highway engineering: asphalt pavement production is less susceptible to oxidation and the consequent damages. The warm mix asphalt (WMA) is produced at a temperature of about (10-40) oC lower than the hot asphalt paving. This is done using one of the methods of producing a WMA. Although WMA's performance is rather good, according to previous studies, as it is less susceptible to oxidation, it is possible to modify some of its properties using different materials, including polymers. Waste tires of vehicles are one of the types of polymers because of their flexible properties. The production of HMA, WMA, and WMA modified with proportions of (1, 1.5, and 2%) of rub
... Show More
CD-nanosponges were prepared by crosslinking B-CD with diphenylcarbonate (DPC) using ultrasound assisted technique. 5-FU was incorporated with NS by freeze drying, and the phase solubility study, complexation efficiency (CE) entrapment efficiency were performed. Also, the particle morphology was studied using SEM and AFM. The in-vitro release of 5-FU from the prepared nanosponges was carried out in 0.1N HCl.
5-FU nanosponges particle size was in the nano size. The optimum formula showed a particle size of (405.46±30) nm, with a polydispersity index (PDI) (0.328±0.002) and a negative zeta potential (-18.75±1.8). Also the drug entrapment efficiency varied with the CD: DPC molar ratio from 15.6 % to 30%. The SEM an
... Show MoreRadiation treatment has long been the conventional approach for treating nasopharyngeal cancer (NPC) tumors due to its anatomic features, biological characteristics, and radiosensitivity. The most common treatment for nasopharyngeal carcinoma is radiotherapy. This study aimed to assess the better quality of radiotherapy treatment techniques using intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT). The VMAT and IMRT are comparative techniques. Forty patients with nasopharyngeal carcinoma and forwarded for radiotherapy were treated with both advanced techniques, IMRT and VMAT, using eclipse software from Varian. The x-ray energy was set at 6 MV. The total prescribed dose was 70 Gy. The results show that the
... Show MoreFilms of pure Poly (methyl methacrylate) (PMMA) doped by potassium iodide (KI) salt with percentages (1%) at different thickness prepared by casting method at room temperature. In order to study the effect of increasing thickness on optical properties, transmission and absorption spectra have been record for five different thicknesses(80,140,210,250,320)µm. The study has been extended to include the changes in the band gap energies, refractive index, extinction coefficient and absorption coefficient with thickness.
The high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning elect
... Show MoreThe main objective of this research is to find out the effect of deviation in the aggregate gradients of asphalt mixtures from the Job Mix Formula (JMF) on the general mixture performance. Three road layers were worked on (wearing layer, binder layer, and base layer) and statistical analysis was performed for the data of completed projects in Baghdad city, and the sieve that carried the largest number of deviations for each layer was identified. No.8 sieve (2.36mm), No.50 sieve (0.3mm), and 3/8'' sieve (9.5mm) had the largest number of deviations in the wearing layer, the binder layer, and the base layer respectively. After that, a mixture called Mix 1, was made. This mixture was selected from a number of completed mixtures, and it
... Show MoreConsuming of by-product or waste materials in highway engineering is significant in the construction of new roads and/or in renovations of the existing ones. Pulverised Fuel ash (PFA), which is a by-product material of burning coal in power stations, is one of these materials that might be incorporated instead of mineral filler in hot asphalt mixtures.
Two types of surface course mixtures have been prepared one with conventional mineral filler i.e. ordinary Portland cement (OPC) while the second was with PFA. Several testings have been conducted to indicate the mechanical properties which were Marshall Stability and Indirect Tensile Strength tests. On the other hand, moisture damage and ageing have been evaluated
... Show MoreThe filler in the asphalt mixture is essential since it plays a significant role in toughening and stiffening the asphalt. Changes in filler type can lead the asphalt mixtures to perform satisfactorily during their design life or degrade rapidly when traffic and environmental effects are considered. This study aims to assess the impact of filler types such as limestone dust (LS) and hydrated lime (HL) on Marshall characteristics and moisture damage in asphalt mixtures. Three different percentages of HL were employed in this study to partially replace the LS mineral filler: 1.5, 2.0, and 2.5% by aggregate weight. Furthermore, a control mixture was created with 7% LS by overall aggregate weight for the wearing course layer. The Marsha
... Show MoreAsphalt pavement properties in Iraq are highly affected by elevated summer air temperatures. One of these properties is stiffness (resilient modulus). To explain the effect of air temperatures on stiffness of asphalt concrete, it is necessary to determine the distribution of temperatures through the pavement asphalt concrete layers. In this study, the distribution of pavement temperatures at three depths (2cm,7cm, 10cm) below the pavement surface is determined by using the temperature data logger instrument. A relationship for determining pavement temperature as related to depth and air temperature has been suggested. To achieve the objective of this thesis, the prepared specimens have been tested for indirect tension in accordance with
... Show More