With the continuous downscaling of semiconductor processes, the growing power density and thermal issues in multicore processors become more and more challenging, thus reliable dynamic thermal management (DTM) is required to prevent severe challenges in system performance. The accuracy of the thermal profile, delivered to the DTM manager, plays a critical role in the efficiency and reliability of DTM, different sources of noise and variations in deep submicron (DSM) technologies severely affecting the thermal data that can lead to significant degradation of DTM performance. In this article, we propose a novel fault-tolerance scheme exploiting approximate computing to mitigate the DSM effects on DTM efficiency. Approximate computing in hardware design can lead to significant gains in energy efficiency, area, and performance. To exploit this opportunity, there is a need for design abstractions that can systematically incorporate approximation in hardware design which is the main contribution of our work. Our proposed scheme achieves 11.20% lower power consumption, 6.59% smaller area, and 12% reduction in the number of wires, while increasing DTM efficiency by 5.24%.
In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.
The two-dimensional transient heat conduction through a thermal insulation of temperature dependent thermal properties is investigated numerically using the FVM. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner surface with a step change in temperature and subjected at its outer surface with a natural convection boundary condition associated with a periodic change in ambient temperature and heat flux of solar radiation. Two thermal insulation materials were selected. The fully implicit time scheme is selected to represent the time discretization. The arithmetic mean thermal conductivity is chosen to be the value of the approximated thermal conductivity at the i
... Show MoreThe disposal of the waste material is the main goal of this investigation by transformation to high-fineness powder and producing self-consolidation concrete (SCC) with less cost and more eco-friendly by reducing the cement weight, taking into consideration the fresh and strength properties. The reference mix design was prepared by adopting the European guide. Five waste materials (clay brick, ceramic, granite tiles, marble tiles, and thermostone blocks) were converted to high-fine particle size distribution and then used as 5, 10, and 15% weight replacements of cement. The improvement in strength properties is more significant when using clay bricks compared to other activated waste
In this study, a fast block matching search algorithm based on blocks' descriptors and multilevel blocks filtering is introduced. The used descriptors are the mean and a set of centralized low order moments. Hierarchal filtering and MAE similarity measure were adopted to nominate the best similar blocks lay within the pool of neighbor blocks. As next step to blocks nomination the similarity of the mean and moments is used to classify the nominated blocks and put them in one of three sub-pools, each one represents certain nomination priority level (i.e., most, less & least level). The main reason of the introducing nomination and classification steps is a significant reduction in the number of matching instances of the pixels belong to the c
... Show MoreThe disposal of the waste material is the main goal of this investigation by transformation to high-fineness powder and producing self-consolidation concrete (SCC) with less cost and more eco-friendly by reducing the cement weight, taking into consideration the fresh and strength properties. The reference mix design was prepared by adopting the European guide. Five waste materials (clay brick, ceramic, granite tiles, marble tiles, and thermostone blocks) were converted to high-fine particle size distribution and then used as 5, 10, and 15% weight replacements of cement. The improvement in strength properties is more significant when using clay bricks compared to other activated waste
Anal fistula is an anorectal condition with over 90% of cases being
cryptoglandular in origin and occurring after anorectal abscesses. The traditional method of
treatment of an anal fistula is by excision or de roofing the tract awaiting complete healing.. Aim:
The aim of this study is to assess the efficacy of diode laser 980 nm in the treatment of low fistula in
ano. Methods: The study was performed between June 2019 to end of September 2019, at the
institute of laser for postgraduate study in Baghdad university. A cohort of ten male patients with a
provisional diagnosis of low type anal fistula were selected for this study and treated by interstitial
photothermal therapy of fistula epithelium by diode laser 980nm
There are no single materials which can withstand all the extreme operating conditions in modern technology. Protection of the metals from hostile environments has therefore become a technical and economic necessity.
In this work, for enhancing their wear-resistance, boride layers were deposited on the surface of low carbon steel by a pack cementation method at 850 °C for (2, 4, and 6) h using vacuum furnace. The boronizing process was achieved using different concentration of boron source (20, 25, and 30) % wt. into coating mixture to optimize the best conditions which ensure the higher properties with lower time. The coating was characteristic by X ray diffraction (XRD), and it is confirmed t
... Show MoreIn the present work, the feasibility of formation near-ideal ohmic behavior of In/n-Si contact efficiently by 300 s duration Nd:YAG pulsed laser processing has been recognized. Several laser pulses energy densities have been used, and the optimal energy density that gives best results is obtained. Topography of the irradiated region was extensively discussed and supported with micrographic illustrations to determine the surface condition that can play the important role in the ohmic contact quality. I-V characteristics in the forward and reverse bias and barrier height measurements have been studied for different irradiated samples to determine the laser energy density that gives best ohmic behavior. Comparing the current results with
... Show MorePolymethylmethacrylate film (PMMA) of thickness 75 μm was evaluated Spectrophotometrically for using it as a low-doses gamma radiation dosimeter. The doses were examined in the range 0.1 mrad-10 krad. Within an absorption band of 200-400 nm, the irradiated films showed an increase in the absorption intensity with increasing the absorbed doses. Calibration curves for the changes in the absorption differences were obtained at 218, 301, and 343 nm. At 218 nm the response for the absorbed doses is a linear in the range 10 mrad- 10 krad. Hence it is recommended to be adopted as an environmental low doses dosimeter