Preferred Language
Articles
/
uhcUP48BVTCNdQwCW2US
Survey on distributed denial of service attack detection using deep learning: A review
...Show More Authors

Distributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks can also be made with smart devices that connect to the Internet, which can be infected and used as botnets. They use Deep Learning (D.L.) techniques like Convolutional Neural Network (C.N.N.) and variants of Recurrent Neural Networks (R.N.N.), such as Long Short-Term Memory (L.S.T.M.), Bidirectional L.S.T.M., Stacked L.S.T.M., and the Gat G.R.U.. These techniques have been used to detect (DDoS) attacks. The Portmap.csv file from the most recent DDoS dataset, CICDDoS2019, has been used to test D.L. approaches. Before giving the data to the D.L. approaches, the data is cleaned up. The pre-processed dataset is used to train and test the D.L. approaches. In the paper, we show how the D.L. approach works with multiple models and how they compare to each other.

View Publication
Publication Date
Wed Jan 01 2025
Journal Name
Fusion: Practice And Applications
Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm
...Show More Authors

This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Aug 23 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Face mask detection based on algorithm YOLOv5s
...Show More Authors

Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on

... Show More
Publication Date
Tue Dec 07 2021
Journal Name
2021 14th International Conference On Developments In Esystems Engineering (dese)
Object Detection and Distance Measurement Using AI
...Show More Authors

View Publication
Scopus (30)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2015
Journal Name
Al-qadisiyah Medical Journal
A survey of dermatophytes isolated from Iraqi patients in Baghdad City
...Show More Authors

SJ Mohammed, AA Noaimi, KE Sharquie, JM Karhoot, MS Jebur, JR Abood, A Al-Hamadani, Al-Qadisiyah Medical Journal, 2015 - Cited by 20

View Publication
Publication Date
Sun Aug 08 2021
Journal Name
Al – Bahith Al – A A‚lami
The Impact of Financial Financing on the Future of the Iraqi Print Press, A Survey Study by the Contactor
...Show More Authors

The objectives of this study revolve around identifying the extent of funding impact on the future of the printed Iraqi press, and whether it threatens their chances of survival, stating the extent of technological development on the income of the printed newspaper, and identifying the causes of the financial crisis on the newspaper. This research is classified as descriptive research, and the researcher used the survey method, and adopted the questionnaire of the views of the contactors, in five Iraqi newspapers (morning - extent - time - the way of the people - the call). The research community included (68) respondents, whereby the comprehensive inventory method was used to define the research community, and the researcher used t

... Show More
Crossref (1)
Crossref
Publication Date
Wed Dec 31 2025
Journal Name
Al–bahith Al–a'alami
The Impact of Financial Financing on the Future of the Iraqi Print Press, A Survey Study by the Contactor
...Show More Authors

The objectives of this study revolve around identifying the extent of funding impact on the future of the printed Iraqi press, and whether it threatens their chances of survival, stating the extent of technological development on the income of the printed newspaper, and identifying the causes of the financial crisis on the newspaper.
This research is classified as descriptive research, and the researcher used the survey method, and adopted the questionnaire of the views of the contactors, in five Iraqi newspapers (morning - extent - time - the way of the people - the call).
The research community included (68) respondents, whereby the comprehensive inventory method was used to define the research community, and the researcher used

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Iraqi Journal Of Information & Communications Technology
Evaluation of DDoS attacks Detection in a New Intrusion Dataset Based on Classification Algorithms
...Show More Authors

Intrusion detection system is an imperative role in increasing security and decreasing the harm of the computer security system and information system when using of network. It observes different events in a network or system to decide occurring an intrusion or not and it is used to make strategic decision, security purposes and analyzing directions. This paper describes host based intrusion detection system architecture for DDoS attack, which intelligently detects the intrusion periodically and dynamically by evaluating the intruder group respective to the present node with its neighbors. We analyze a dependable dataset named CICIDS 2017 that contains benign and DDoS attack network flows, which meets certifiable criteria and is ope

... Show More
View Publication Preview PDF
Crossref (22)
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Signals And Communication Technology
Survey on Twitter Sentiment Analysis: Architecture, Classifications, and Challenges
...Show More Authors

View Publication
Scopus (14)
Crossref (12)
Scopus Crossref
Publication Date
Tue Dec 12 2017
Journal Name
Al-khwarizmi Engineering Journal
Model Reference Adaptive Control based on a Self-Recurrent Wavelet Neural Network Utilizing Micro Artificial Immune Systems
...Show More Authors

Abstract 

This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Artificial Neural Network and Latent Semantic Analysis for Adverse Drug Reaction Detection
...Show More Authors

Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD

... Show More
View Publication Preview PDF
Scopus (14)
Crossref (9)
Scopus Crossref