Distributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks can also be made with smart devices that connect to the Internet, which can be infected and used as botnets. They use Deep Learning (D.L.) techniques like Convolutional Neural Network (C.N.N.) and variants of Recurrent Neural Networks (R.N.N.), such as Long Short-Term Memory (L.S.T.M.), Bidirectional L.S.T.M., Stacked L.S.T.M., and the Gat G.R.U.. These techniques have been used to detect (DDoS) attacks. The Portmap.csv file from the most recent DDoS dataset, CICDDoS2019, has been used to test D.L. approaches. Before giving the data to the D.L. approaches, the data is cleaned up. The pre-processed dataset is used to train and test the D.L. approaches. In the paper, we show how the D.L. approach works with multiple models and how they compare to each other.
The study was conducted for the detection of Aflatoxin B1(AFB1) in the serum and urine of 42 early and middle childhood patients (26 male and 16 female ) with renal function disease, liver function disease, in additional to atrophy in the growth and other symptoms depending on the information within consent obtained from each patient, in addition to 8 children, apparently healthy, as the control. The technique of HPLC was used for the detection of AFB1 from all samples. The results showed that out of 42 patient children, 19 (45.2%) gave positive detection of AFB1 in the serum among all age groups patients with a mean of 0.88 ng/ml and a range of (0.12-3.04) ng/ml. This was compared with the cont
... Show MoreThe effects of Internet use on university’s students:The effects of Internet use on university’s students:“A Study on a Sample of Jordanian University’s students "This survey aims to identify the most important effects of Internet use on Jordanian public and private universities’ students by monitoring and analyzing a set of indicators that show the quality of the effects on specific fields such as cultural, social, psychological, moral and political effects .To achieve these goals, the study attempts to answer the following questions:1. What are the effects of Internet’s use on students?2. What is the relationship between the effects and demographic variables such as gender, age, family size an
... Show MoreTHE ROLE OF ELECTRONIC-PAYMENT SERVICE PROVIDERS IN THE DEVELOPMENT OF E-BANKING IN IRAQ - AN APPLIED RESEARCH IN CENTRAL BANK OF IRAQ
This study included an analysis of three stations (Al Dora, Al Za'franiya, and Arab Ejbur) chosen to study the Physiochemical and microorganism (Fungi and Bacteria) loud of the Tigris River in the southern section of Baghdad city. The result of this research shows that the highest temperature recorded in summer in Al Za'franiya was 37Co, while the lowest temperature recorded in winter in Al Dora was 9Co. and the value of pH recorded the highest in summer it was 7.9 in Arab Ejbur, and the lowest value was in winter 7.1 in Al Dora regions, While Total Organic Carbon (TOC) shows the highest values found in the summer was 6.7 Mg L-1in Al Za'franiya Samples, and the lowest values were 2.0 Mg L-1in Arab Ejbur during the winter. The more f
... Show MoreSensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar
... Show More