Distributed Denial of Service (DDoS) attacks on Web-based services have grown in both number and sophistication with the rise of advanced wireless technology and modern computing paradigms. Detecting these attacks in the sea of communication packets is very important. There were a lot of DDoS attacks that were directed at the network and transport layers at first. During the past few years, attackers have changed their strategies to try to get into the application layer. The application layer attacks could be more harmful and stealthier because the attack traffic and the normal traffic flows cannot be told apart. Distributed attacks are hard to fight because they can affect real computing resources as well as network bandwidth. DDoS attacks can also be made with smart devices that connect to the Internet, which can be infected and used as botnets. They use Deep Learning (D.L.) techniques like Convolutional Neural Network (C.N.N.) and variants of Recurrent Neural Networks (R.N.N.), such as Long Short-Term Memory (L.S.T.M.), Bidirectional L.S.T.M., Stacked L.S.T.M., and the Gat G.R.U.. These techniques have been used to detect (DDoS) attacks. The Portmap.csv file from the most recent DDoS dataset, CICDDoS2019, has been used to test D.L. approaches. Before giving the data to the D.L. approaches, the data is cleaned up. The pre-processed dataset is used to train and test the D.L. approaches. In the paper, we show how the D.L. approach works with multiple models and how they compare to each other.
To study and understand the mechanism of living systems, and how it works, it is quite important to investigate it at molecular level (like genomic, proteomic) as well as the methodologies, and how to apply and imply it on different branch of sciences and how can use it in developing medical diagnosis, treatments, drugs, and increased it in the future. Additionally it can also be applied in forensic techniques, food production and agriculture, as well as genetic profiling. This can be well understand by interfering and combinations of all branches of life sciences such as chemistry, physics, biotechnology, genetic evolution, and minimize the gap between them, this
... Show MoreKriging, a geostatistical technique, has been used for many years to evaluate groundwater quality. The best estimation data for unsampled points were determined by using this method depending on measured variables for an area. The groundwater contaminants assessment worldwide was found through many kriging methods. The present paper shows a review of the most known methods of kriging that were used in estimating and mapping the groundwater quality. Indicator kriging, simple kriging, cokriging, ordinary kriging, disjunctive kriging and lognormal kriging are the most used techniques. In addition, the concept of the disjunctive kriging method was explained in this work to be easily understood.
After the information revolution that occurred in the Western world, and the developments in all fields, especially in the field of education and e-learning, from an integrated system based on the effective employment of information and communication technology in the teaching and learning processes through an environment rich in computer and Internet applications, the community and the learner were able to access information sources and learning at any time and place, in a way that achieves mutual interaction between the elements of the system and the surrounding environment. After the occurrence of the phenomenon of Covid 19, it led to a major interruption in all educational systems that had never happened before, and the disrupt
... Show MoreThis study aims to clarify areas of using information technology in accounting and its impact on the profession of auditors by reviewing the concept, types, areas and the importance of information technology and its implications on the audit profession as well as to clarify the extent of contribution of information technology in developing of procedures of the audit profession and what its requirement, also this study aims to enhance the theoretical side by identifying the views of a sample of auditors in Arab countries selected (Iraq, Syria, Jordan), for the extent of using of information technology in their work and level of their perception for the importance of that
Productivity estimating of ready mixed concrete batch plant is an essential tool for the successful completion of the construction process. It is defined as the output of the system per unit of time. Usually, the actual productivity values of construction equipment in the site are not consistent with the nominal ones. Therefore, it is necessary to make a comprehensive evaluation of the nominal productivity of equipment concerning the effected factors and then re-evaluate them according to the actual values.
In this paper, the forecasting system was employed is an Artificial Intelligence technique (AI). It is represented by Artificial Neural Network (ANN) to establish the predicted model to estimate wet ready mixe
... Show MoreThe study was carried out to study the quality of 7 samples of imported frozen chicken that are available in locally markets. These samples were collected from Baghdad markets in June 2010. The results were showed that the all samples were not content the name of company and batch number one the labeling, while the microbial test refer to found contamination in all samples, but it in the limited of Iraqi standers specification for frozen chicken, also note Staphylococcus aureus in all samples, the samples C1 and C2 have Salmonella ohio, while not observe Coliform bacteria in all samples.
Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreDrilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show More