Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CNN infrastructure. Findings: The results acquired through the investigated CBIR system alongside the benchmarked results have clearly indicated that the suggested technique had the best performance with the overall accuracy at 88.29% as opposed to the other sets of data adopted in the experiments. The outstanding results indicate clearly that the suggested method was effective for all the sets of data. Improvements/Applications: As a result of this study, it was found the revealed that the multiple image representation was redundant for extraction accuracy, and the findings from the study indicated that automatically retrieved features are capable and reliable in generating accurate outcomes.
This study aims at shedding light on the linguistic significance of collocation networks in the academic writing context. Following Firth’s principle “You shall know a word by the company it keeps.” The study intends to examine three selected nodes (i.e. research, study, and paper) shared collocations in an academic context. This is achieved by using the corpus linguistic tool; GraphColl in #LancsBox software version 5 which was announced in June 2020 in analyzing selected nodes. The study focuses on academic writing of two corpora which were designed and collected especially to serve the purpose of the study. The corpora consist of a collection of abstracts extracted from two different academic journals that publish for writ
... Show MoreDeveloping and researching antenna designs are analogous to excavating in an undiscovered mine. This paper proposes a multi-band antenna with a new hexagonal ring shape, theoretically designed, developed, and analyzed using a CST before being manufactured. The antenna has undergone six changes to provide the best performance. The results of the surface current distribution and the electric field distribution on the surface of the hexagonal patch were theoretically analyzed and studied. The sequential approach taken to determine the most effective design is logical, and prevents deviation from the work direction. After comparing the six theoretical results, the fifth model proved to be the best for making a prototype. Measured results rep
... Show MoreA total number of 68 water samples was revealed 20 isolates being Staphylococcus aureus. Irrigation water isolates represented 25% of isolates while wastewater 75%. all isolates were identified by morphological, microscopial, biochemical tests and VITEK®2 Compact. Bacterial isolates were subjected to 16 antibiotics, all irrigation water and wastewater isolates were resistant to penicillin while they were fully sensitive to Ciprofloxcin. Irrigation water isolates showed relatively greater multi-drug resistance than wastewater, wherein irrigation water isolates showed 100% multi-drug resistance while wastewater isolates showed 73.3% multi-drug resistance, indicating the ability of S. aureus MDR to move from one site to another, which means t
... Show MoreLocalization is an essential demand in wireless sensor networks (WSNs). It relies on several types of measurements. This paper focuses on positioning in 3-D space using time-of-arrival- (TOA-) based distance measurements between the target node and a number of anchor nodes. Central localization is assumed and either RF, acoustic or UWB signals are used for distance measurements. This problem is treated by using iterative gradient descent (GD), and an iterative GD-based algorithm for localization of moving sensors in a WSN has been proposed. To localize a node in 3-D space, at least four anchors are needed. In this work, however, five anchors are used to get better accuracy. In GD localization of a moving sensor, the algo
... Show MoreIn this work, a simple and new method is proposed to simultaneously improve the physical layer security and the transmission performance of the optical orthogonal frequency division multiplexing system, by combining orthogonal frequency division multiplexing technique with chaotic theory principles. In the system, a 2-D chaotic map is employed. The introduced system replaces complex operations such as matrix multiplication with simple operations such as multiplexing and inverting. The system performance in terms of bit error rate (BER) and peak to average ratio (PAPR) is enhanced. The system is simulated using Optisystem15 with a MATLAB2016 and for different constellations. The simulation results showed that the BE
... Show MoreInternet paths sharing the same congested link can be identified using several shared congestion detection techniques. The new detection technique which is proposed in this paper depends on the previous novel technique (delay correlation with wavelet denoising (DCW) with new denoising method called Discrete Multiwavelet Transform (DMWT) as signal denoising to separate between queuing delay caused by network congestion and delay caused by various other delay variations. The new detection technique provides faster convergence (3 to 5 seconds less than previous novel technique) while using fewer probe packets approximately half numbers than the previous novel technique, so it will reduce the overload on the network caused by probe packets.
... Show MoreImage compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show More