Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CNN infrastructure. Findings: The results acquired through the investigated CBIR system alongside the benchmarked results have clearly indicated that the suggested technique had the best performance with the overall accuracy at 88.29% as opposed to the other sets of data adopted in the experiments. The outstanding results indicate clearly that the suggested method was effective for all the sets of data. Improvements/Applications: As a result of this study, it was found the revealed that the multiple image representation was redundant for extraction accuracy, and the findings from the study indicated that automatically retrieved features are capable and reliable in generating accurate outcomes.
Optical Mark Recognition (OMR) is the technology of electronically extracting intended data from marked fields, such as squareand bubbles fields, on printed forms. OMR technology is particularly useful for applications in which large numbers of hand-filled forms need to be processed quickly and with a great degree of accuracy. The technique is particularly popular with schools and universities for the reading in of multiple choice exam papers. This paper proposed OMRbased on Modify Multi-Connect Architecture (MMCA) associative memory, its work in two phases: training phase and recognition phase. The proposed method was also able to detect more than one or no selected choice. Among 800 test samples with 8 types of grid answer sheets and tota
... Show MoreThe aim of this study is to develop a novel framework for managing risks in smart supply chains by enhancing business continuity and resilience against potential disruptions. This research addresses the growing uncertainty in supply chain environments, driven by both natural phenomena-such as pandemics and earthquakes—and human-induced events, including wars, political upheavals, and societal transformations. Recognizing that traditional risk management approaches are insufficient in such dynamic contexts, the study proposes an adaptive framework that integrates proactive and remedial measures for effective risk mitigation. A fuzzy risk matrix is employed to assess and analyze uncertainties, facilitating the identification of disr
... Show MoreLaue back reflection patterns for quartz crystal are indexed by using Orient Express- program to simulate orientation of single crystals from assignment of principle zones. An oriented quartz single crystal was used as a substrate to deposit Zn metal by controlled thermal evaporation to achieve single crystal films of Zn that are subsequently evaluated by x-ray powder diffraction.
Gray-Scale Image Brightness/Contrast Enhancement with Multi-Model
Histogram linear Contrast Stretching (MMHLCS) method
In drilling processes, the rheological properties pointed to the nature of the run-off and the composition of the drilling mud. Drilling mud performance can be assessed for solving the problems of the hole cleaning, fluid management, and hydraulics controls. The rheology factors are typically termed through the following parameters: Yield Point (Yp) and Plastic Viscosity (μp). The relation of (YP/ μp) is used for measuring of levelling for flow. High YP/ μp percentages are responsible for well cuttings transportation through laminar flow. The adequate values of (YP/ μp) are between 0 to 1 for the rheological models which used in drilling. This is what appeared in most of the models that were used in this study. The pressure loss
... Show MoreThe increasing complexity of how humans interact with and process information has demonstrated significant advancements in Natural Language Processing (NLP), transitioning from task-specific architectures to generalized frameworks applicable across multiple tasks. Despite their success, challenges persist in specialized domains such as translation, where instruction tuning may prioritize fluency over accuracy. Against this backdrop, the present study conducts a comparative evaluation of ChatGPT-Plus and DeepSeek (R1) on a high-fidelity bilingual retrieval-and-translation task. A single standardize prompt directs each model to access the Arabic-language news section of the College of Medicine, University of Baghdad, retrieve the three most r
... Show MoreThe growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co
... Show More