Depletion of fossil fuel is one of the main reasons why the bioethanol has become popular. It is a renewable energy source. In order to meet the great demand of bioethanol, it is best that the bioethanol production is from cheap raw materials. Since the golden shower fruit is not being utilized and is considered as waste material, hence, this study was conducted to make use of the large volume of the residue as feedstock to test its potential for bioethanol extraction.The main goal of this study is to obtain the most volume of bioethanol from the golden shower fruit liquid residue by the factors, days of fermentation (3, 5, and 7 days) and sugar concentration (15, 20 and 25 brix) of the liquid residue. Also, part of the study is to compu
... Show MoreShaky Baghdad heavy crude oil 22 API is processed by distillation and solvent extraction. The purpose of distillation is to separate the light distillates (light fractions) which represent 35% of heavy crude oil, and to obtain the reduced crude oil. The heavy residue (9 API) is extracted with Iraqi light naphtha to get the deasphaltened oil (DAO), the extraction carried out with temperature range of 20-75 oC, solvent to oil ratio 5-15:1(ml:g) and a mixing time of 15 minutes. In general, results show that API of DAO increased twice the API of reduced crude oil while sulfur and metals content decreased 20% and 50% respectively. Deasphaltened oil produced from various operating conditions blended with the
... Show MoreThis work deals with thermal cracking of three samples of extract lubricating oil produced as a by-product from furfural extraction process of lubricating oil base stock in AL-Dura refinery. The thermal cracking processes were carried out at a temperature range of 325-400 ºC and atmospheric pressure by batch laboratory reactor. The distillation of cracking liquid products was achieved by general ASTM distillation (ASTM D -86) for separation of gasoline fraction up to 220 ºC from light cycle oil fraction above 220 ºC. The comparison between the conversions at different operating conditions of thermal cracking processes indicates that a high conversion was obtained at 375°C, according to gasoline production. According to gasoline produ
... Show MoreThe variability of Candaharia levanderi (Simroth, 1902)(Gastropoda, Stylommatophora, Parmacellidae) in two biotopes (southern and northern slopes, the Kampirtepa gorges, the Kugitang Tau ridge) has been investigated using polymerase chain reaction (PCR) with the implementation of primers, the 18S DNA of the region is amplified, the variability (sharply differing in color) of two populations of C. levanderi is studied .
The first population is in the suburbs of Namangan, (Namangan Region); the second population is in Kampirtepa gorges, Kugitang Tau ridge (Surkhandarya Region). It is established that, most often, the variability of morphological signs is observed on the coloration of mollusks. The development of body coloration is an ad
Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
This study is concerned with the recent changes that occurred in the last three years (2017-2019) in the marshes region in southern Iraq as a result of the changes in the global climate, the study included all the water bodies in the five governorates that are located in the southern regions of Iraq (Wasit, Maysan, Dhi-Qar, Qadisiyah and Basrah), which represent the marshes lands in Iraq. Scenes of the Landsat 8 satellite are used to create a mosaic to cover the five governorates within a time window with the slightest difference between the date of the scene capture, not to exceed 8 days. The results of calculating the changes in water areas were obtained using the classifier support vector machine, where high accuracy ratios were recorded
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreVegetation monitoring is considered an important application in remote sensing task due to variation of vegetation types and their distribution. The vegetation concentration around the Earth is increase in 5% in 2000 according to NASA monitoring. This increase is due to the Indian vegetable programs. In this research, the vegetation monitoring in Baghdad city was done using Normalized Difference Vegetation Index (NDVI) for temporal Landsat satellite images (Landsat 5 TM& Landsat 8 OIL). These images had been used and utilize in different times during the period from 2000, 2010, 2015 & 2017. The outcomes of the study demonstrate that a change in the vegetation Cover (VC) in Baghdad city. (NDVI) generally shows a
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show MoreChange detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac