Identifying the total number of fruits on trees has long been of interest in agricultural crop estimation work. Yield prediction of fruits in practical environment is one of the hard and significant tasks to obtain better results in crop management system to achieve more productivity with regard to moderate cost. Utilized color vision in machine vision system to identify citrus fruits, and estimated yield information of the citrus grove in-real time. Fruit recognition algorithms based on color features to estimate the number of fruit. In the current research work, some low complexity and efficient image analysis approach was proposed to count yield fruits image in the natural scene. Semi automatic segmentation and yield calculation of fruit based on shape analysis is presented. Color and shape analysis was utilized to segment the images of different fruits like apple, pomegranate obtained under different lighting conditions. First the input sectional tree image was converted from RGB colour space into the colour space transform (i.e., YUV, YIQ, or YCbCr). The resultant image was then applied to the algorithm for fruit segmentation. After it is applied Morphological Operations which is enhanced image then execute Blob counting method which identify the object and count the number of it. Accuracy of this algorithm used in this thesis is 82.21% for images that have been scanned.
Non uniform channelization is a crucial task in cognitive radio receivers for obtaining separate channels from the digitized wideband input signal at different intervals of time. The two main requirements in the channelizer are reconfigurability and low complexity. In this paper, a reconfigurable architecture based on a combination of Improved Coefficient Decimation Method (ICDM) and Coefficient Interpolation Method (CIM) is proposed. The proposed Hybrid Coefficient Decimation-Interpolation Method (HCDIM) based filter bank (FB) is able to realize the same number of channels realized using (ICDM) but with a maximum decimation factor divided by the interpolation factor (L), which leads to less deterioration in stop band at
... Show MoreThe continuous advancement in the use of the IoT has greatly transformed industries, though at the same time it has made the IoT network vulnerable to highly advanced cybercrimes. There are several limitations with traditional security measures for IoT; the protection of distributed and adaptive IoT systems requires new approaches. This research presents novel threat intelligence for IoT networks based on deep learning, which maintains compliance with IEEE standards. Interweaving artificial intelligence with standardization frameworks is the goal of the study and, thus, improves the identification, protection, and reduction of cyber threats impacting IoT environments. The study is systematic and begins by examining IoT-specific thre
... Show MoreTwo field experiments were carried out for cultivating yellow maize crop Zea mays L. during the autumn planting season 2019 in two sites with soils of different textures. The first site is a loamy texture in one of the fields of the Medhatia Agriculture Division, Babylon Governorate. The second was silty loam by an alluvial mixture in one of the fields of Al-Nouriah Research Station, Ministry of Agriculture located in Al-Nouriah sub-district, Al-Qadisiyah governorate. It was found through the results that the uniformity, efficiency, and adequacy of the irrigation efficiency of the sprinkler irrigation method is better than that of the sprinkler irrigation method, and it ranged between (88.6-88.7) for uniformity and (84-86)% of the irrigatio
... Show More