Preferred Language
Articles
/
uRc0Go4BVTCNdQwCZDEd
Deep Learning Approach for Oil Pipeline Leakage Detection Using Image-Based Edge Detection Techniques
...Show More Authors

Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are sent to the base station. Using deep learning approaches such as holistically-nested edge detection (HED) and extreme inception (Xception) networks, images are analyzed at the base station to identify contours using dense extreme inception networks for edge detection (DexiNed). This algorithm is capable of finding many contours in images. Moreover, the CIELAB color space (LAB) is employed to locate black-colored contours, which may indicate oil spills. The suggested method involves eliminating smaller contours to calculate the area of larger contours. If the contour's area exceeds a certain threshold, it is classified as a spill; otherwise, it is stored in a database for further review. In the experiments, spill sizes of 1m2, 2m2, and 3m2 were established at three separate test locations. The drone was operated at three different heights (5 m, 10 m, and 15 m) to capture the scenes. The results show that efficient detection can be achieved at a height of 10 meters using the DexiNed algorithm. Statistical comparison with other edge detection methods using basic metrics, such as perimage best threshold (OIS = 0.867), fixed contour threshold (ODS = 0.859), and average precision (AP = 0.905), validates the effectiveness of the DexiNed algorithm in generating thin edge maps and identifying oil slicks. © 2023 Lavoisier. All rights reserved.

Scopus Crossref
View Publication
Publication Date
Thu Oct 01 2020
Journal Name
Indian Journal Of Forensic Medicine & Toxicology
Study the Ability of Pseudomonas Aeruginosa Isolated from Different Clinical Cases to Biofilm Formation and Detection of Algd Gene.
...Show More Authors

98 samples were collected from various clinical sources included (Burns, wounds, urines, sputums, blood) From the city of Baghdad, After performing the biochemical and microscopic examination, 52 isolates were obtained for Pseudomonas aeruginosa, 17 (32.7%) isolates from burn infection, 12 (23%) isolates from Wound infection 11 (21.2%) isolates from urine infection, 7 (13.5%) isolates of sputum and 5 (9.6%) isolates from blood. Bacteria susceptibility to form biofilm has been detectedby microtiter plate method, The results showed that 80% of the bacterial isolates were produced the biofilm with different proportions, alg D gene (alginate production) has been detected by polymerase chain reaction (PCR) Which plays an essential role in the fo

... Show More
Publication Date
Wed Aug 31 2022
Journal Name
Al-kindy College Medical Journal
Automated breast ultrasound: A comparison study with handheld ultrasound in detection and characterization of lesions in mammographically dense breast
...Show More Authors

Background: Although mammography is a powerful screening tool in detection of early breast cancer, it is imperfect, particularly for women with dense breast, which have a higher risk to develop cancer and decrease the sensitivity of mammogram, Automated breast ultrasound is a recently introduced ultrasonography technique, developed with the purpose to standardize breast ultrasonography and overcome some limitations of handheld ultrasound, this study aims to evaluate the diagnostic efficacy of Automated breast ultrasound and compare it with handheld ultrasound in the detection and characterization of breast lesions in women with dense breasts.

Objectives:<

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 20 2023
Journal Name
Journal Of Applied And Natural Science
Detection of some virulence genes (esp, agg, gelE, CylA) in Enterococcus faecalis isolated from different clinical cases at Baghdad
...Show More Authors

The virulent genes are the key players in the ability of the bacterium to cause disease. The products of such genes that facilitate the successful colonization and survival of the bacterium in or cause damage to the host are pathogenicity determinants. This study aimed to investigate the prevalence of virulence factors (esp, agg, gelE, CylA) in E. faecalis isolated from diverse human clinical collected in Iraqi patient , as well as to assess their ability to form biofilm and to determine their haemolytic and gelatinase activities. Thirty-two isolates of bacteria Enterococcus faecalis were obtained, including 15 isolates (46.87%) of the urine, 6 isolates (18.75%) for each of the stool and uterine secretions, and 5 isolates (15.62%) of the wo

... Show More
Preview PDF
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Detection of RAF fusion transcripts in FFPE samples of Medullablastoma and Ependymom in Iraqi children with RT-RQPCR assays
...Show More Authors

Medulloblastomas and ependymomas are the most common malignant brain tumors in children. However genetic abnormalities associated with their development and prognosis remain unclear. Recently two gene fusions, KIAA1549–BRAF and SRGAP3–RAF1 have been detected in a number of brain tumours. We report here our development and validation of RT-RQPCR assays to detect various isoforms of these two fusion genes in formalin fixed paraffin embedded (FFPE) tissues of medulloblastoma and ependymoma. We examined these fusion genes in 44 paediatric brain tumours, 33 medulloblastomas and 11 ependymomas. We detected both fusion transcripts in 8/33, 5/33 SRGAP3 ex10/RAF1 ex10, and 3/33 KIAA1549 ex16/BRAF ex9, meduloblastomas but none in the 11 ep

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Nov 01 2025
Journal Name
Iop Conference Series: Earth And Environmental Science
Optimizing Irrigation Water Quality Index Along the Tigris River Using Gravitational Search Algorithm: A Novel Approach for Sustainable Water Management
...Show More Authors
Abstract<p>The Tigris River, a vital water resource for Iraq, faces significant challenges due to urbanization, agricultural runoff, industrial discharges, and climate change, leading to deteriorating water quality. Traditional methods for assessing irrigation water quality, such as laboratory testing and statistical modeling, are often insufficient for capturing dynamic and nonlinear relationships between parameters. This study proposes a novel application of the Gravitational Search Algorithm (GSA) to estimate the Irrigation Water Quality Index (IWQI) along the Tigris River. Using data from multiple stations, the study evaluates spatial variability in water quality, focusing on key paramete</p> ... Show More
View Publication
Scopus Crossref
Publication Date
Thu May 02 2024
Journal Name
Petroleum And Coal
Wellbore Instability Analysis to Determine the Failure Criteria for Deep Well/H Oilfield
...Show More Authors

View Publication
Scopus (2)
Scopus
Publication Date
Mon Dec 01 2025
Journal Name
Journal Of Physics: Conference Series
Advanced Machine Learning Models for Banana Sweetness Classification
...Show More Authors

It takes a lot of time to classify the banana slices by sweetness level using traditional methods. By assessing the quality of fruits more focus is placed on its sweetness as well as the color since they affect the taste. The reason for sorting banana slices by their sweetness is to estimate the ripeness of bananas using the sweetness and color values of the slices. This classifying system assists in establishing the degree of ripeness of bananas needed for processing and consumption. The purpose of this article is to compare the efficiency of the SVM-linear, SVM-polynomial, and LDA classification of the sweetness of banana slices by their LRV level. The result of the experiment showed that the highest accuracy of 96.66% was achieved by the

... Show More
View Publication
Crossref
Publication Date
Fri Jan 09 2026
Journal Name
Journal Of Baghdad College Of Dentistry
Validity of 3D Reconstructed Computed Tomographic Image in Using Craniometrical Measurements of the Skull for Sex Differentiation (An Iraqi Study)
...Show More Authors

Background: The skull offers a high resistance of adverse environmental conditions over time, resulting in the greater stability of the dimorphic features as compared to other skeletal bony pieces. Sex determination of human skeletal considered an initial step in its identification. The present study is undertaken to evaluate the validity of 3D reconstructed computed tomographic images in sex differentiation by using craniometrical measurements at various parts of the skull. Materials and Method: 3D reconstructed computed tomographic scanning of 100 Iraqi subject, (50 males and 50 females) were analyzed with their age range from20-70 years old. Craniometrical linear measurements were located and marked on both side of the 3D skull images.

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 24 2025
Journal Name
Food And Bioprocess Technology
Classification of Apple Slices Treated by Atmospheric Plasma Jet for Post-harvest Processes Using Image Processing and Convolutional Neural Networks
...Show More Authors
Abstract<p>Apple slice grading is useful in post-harvest operations for sorting, grading, packaging, labeling, processing, storage, transportation, and meeting market demand and consumer preferences. Proper grading of apple slices can help ensure the quality, safety, and marketability of the final products, contributing to the post-harvest operations of the overall success of the apple industry. The article aims to create a convolutional neural network (CNN) model to classify images of apple slices after immersing them in atmospheric plasma at two different pressures (1 and 5 atm) and two different immersion times (3 and again 6 min) once and in filtered water based on the hardness of the slices usin</p> ... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Development of Bridges Maintenance Management System based on Geographic Information System Techniques (Case study: Al-Muthanna \ Iraq)
...Show More Authors

A Geographic Information System (GIS) is a computerized database management system for accumulating, storage, retrieval, analysis, and display spatial data. In general, GIS contains two broad categories of information, geo-referenced spatial data and attribute data. Geo-referenced spatial data define objects that have an orientation and relationship in two or three-dimensional space, while attribute data is qualitative data that can be counted for recording and analysis. The main aim of this research is to reveal the role of GIS technology in the enhancement of bridge maintenance management system components such as the output results, and make it more interpretable through dynamic colour coding and more sophisticated visualization

... Show More
View Publication
Crossref (5)
Crossref