Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are sent to the base station. Using deep learning approaches such as holistically-nested edge detection (HED) and extreme inception (Xception) networks, images are analyzed at the base station to identify contours using dense extreme inception networks for edge detection (DexiNed). This algorithm is capable of finding many contours in images. Moreover, the CIELAB color space (LAB) is employed to locate black-colored contours, which may indicate oil spills. The suggested method involves eliminating smaller contours to calculate the area of larger contours. If the contour's area exceeds a certain threshold, it is classified as a spill; otherwise, it is stored in a database for further review. In the experiments, spill sizes of 1m2, 2m2, and 3m2 were established at three separate test locations. The drone was operated at three different heights (5 m, 10 m, and 15 m) to capture the scenes. The results show that efficient detection can be achieved at a height of 10 meters using the DexiNed algorithm. Statistical comparison with other edge detection methods using basic metrics, such as perimage best threshold (OIS = 0.867), fixed contour threshold (ODS = 0.859), and average precision (AP = 0.905), validates the effectiveness of the DexiNed algorithm in generating thin edge maps and identifying oil slicks. © 2023 Lavoisier. All rights reserved.
conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.
The denoising of a natural image corrupted by Gaussian noise is a problem in signal or image processing. Much work has been done in the field of wavelet thresholding but most of it was focused on statistical modeling of wavelet coefficients and the optimal choice of thresholds. This paper describes a new method for the suppression of noise in image by fusing the stationary wavelet denoising technique with adaptive wiener filter. The wiener filter is applied to the reconstructed image for the approximation coefficients only, while the thresholding technique is applied to the details coefficients of the transform, then get the final denoised image is obtained by combining the two results. The proposed method was applied by usin
... Show MoreAlthough the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .
In this paper a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet
... Show MoreThis paper presents a proposed method for (CBIR) from using Discrete Cosine Transform with Kekre Wavelet Transform (DCT/KWT), and Daubechies Wavelet Transform with Kekre Wavelet Transform (D4/KWT) to extract features for Distributed Database system where clients/server as a Star topology, client send the query image and server (which has the database) make all the work and then send the retrieval images to the client. A comparison between these two approaches: first DCT compare with DCT/KWT and second D4 compare with D4/KWT are made. The work experimented over the image database of 200 images of 4 categories and the performance of image retrieval with respect to two similarity measures namely Euclidian distance (ED) and sum of absolute diff
... Show MoreOne of the most important problems in the oil production process and when its continuous flow, is emulsified oil (w/o emulsion), which in turn causes many problems, from the production line to the extended pipelines that are then transported to the oil refining process. It was observed that the nanomaterial (SiO2) supported the separation process by adding it to the emulsion sample and showed a high separation rate with the demulsifiers (RB6000) and (sebamax) where the percentage of separation was greater than (90 and 80 )% respectively, and less than that when dealing with (Sodium dodecyl sulfate and Diethylene glycol), the percentage of separation was (60% and 50%) respectively.
The high proportion
... Show More98 samples were collected from various clinical sources included (Burns, wounds, urines, sputums, blood) From the city of Baghdad, After performing the biochemical and microscopic examination, 52 isolates were obtained for Pseudomonas aeruginosa, 17 (32.7%) isolates from burn infection, 12 (23%) isolates from Wound infection 11 (21.2%) isolates from urine infection, 7 (13.5%) isolates of sputum and 5 (9.6%) isolates from blood. Bacteria susceptibility to form biofilm has been detectedby microtiter plate method, The results showed that 80% of the bacterial isolates were produced the biofilm with different proportions, alg D gene (alginate production) has been detected by polymerase chain reaction (PCR) Which plays an essential role in the fo
... Show MoreBackground: Osteoporosis is denoted by low bone mass and microarchitectural breakdown of bone tissue, directing to increased fracture risk and bone fragility. Fractures may lead to a decreased quality of life and increased medical costs. Thus, osteoporosis is widely considered a significant health concern.
Objective. This study aimed to compare quantitative computed tomography (QCT) and dual-energy X-Ray absorptiometry (DXA) to detect osteoporosis in postmenopausal women.
Subjects and Methods. We measured spinal volumetric bone mineral density (BMD) with QCT and areal spinal and hip BMD with DXA in 164 postmenopausal women. We calculated the osteo
... Show MoreIn Present study, 25 clinical isolates of Proteus spp. of clinical samples, urine, wounds and burns collected from different hospitals in Baghdad city, all isolates were identified as Proteus mirabilis using different bacteriological media, biochemical assays and Vitek-2 system. It was found that 15 (60%) isolates were identifying as P. mirabilis. The susceptibility of P. mirabilis isolates to cefotaxime was 66.6 %, while to ceftazidime was 20%. Extended spectrum β-lactamses producing Proteus was 30.7 %. DNA of 5 isolates of P. mirabilis was extracted and detection for blaVEB-1 gene by using multiplex polymerase chain reaction (PCR). Results showed that the presence of this gene in all tested isolates, as an important indicator for increas
... Show More