Evolutionary algorithms are better than heuristic algorithms at finding protein complexes in protein-protein interaction networks (PPINs). Many of these algorithms depend on their standard frameworks, which are based on topology. Further, many of these algorithms have been exclusively examined on networks with only reliable interaction data. The main objective of this paper is to extend the design of the canonical and topological-based evolutionary algorithms suggested in the literature to cope with noisy PPINs. The design of the evolutionary algorithm is extended based on the functional domain of the proteins rather than on the topological domain of the PPIN. The gene ontology annotation in each molecular function, biological process, and cellular component is used to get the functional domain. The reliability of the proposed algorithm is examined against the algorithms proposed in the literature. To this end, a yeast protein-protein interaction dataset is used in the assessment of the final quality of the algorithms. To make fake negative controls of PPIs that are wrongly informed and are linked to the high-throughput interaction data, different noisy PPINs are created. The noisy PPINs are synthesized with a different and increasing percentage of misinformed PPIs. The results confirm the effectiveness of the extended evolutionary algorithm design to utilize the biological knowledge of the gene ontology. Feeding EA design with GO annotation data improves reliability and produces more accurate detection results than the counterpart algorithms.
In this paper we describe several different training algorithms for feed forward neural networks(FFNN). In all of these algorithms we use the gradient of the performance function, energy function, to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training. The above algorithms have a variety of different computation and thus different type of form of search direction and storage requirements, however non of the above algorithms has a global properties which suited to all problems.
The environmental problems that have emerged recently as a result of pressure on the environment due to the increase in population size, especially in urban cities, where this increase was accompanied by the need for housing as well as the need for services and activities. This led to the establishment of many vertical residential buildings represented by residential complexes within the urban fabric of the city of Baghdad. As part of following the methodology of urban dictation policies in empty areas, and to accommodate the largest number of residents as a result of the multiplicity of floors and housing, these buildings must be subject to the standards and requirements of sustainability at the level of their spatial location and their
... Show MoreThis research aims to know and the role of the marketing recovery dimensions in improving the organization's reputation through an exploratory study of private banks in the city of Baghdad. The aim of the research is to define the role of the marketing recovery through its dimensions (compensation, apology, speed of response, assistance and problem solving), in improving the organization's reputation, as the research will attempt to provide a theoretical framework for the dimensions studied through the most important of what researchers presented and then conduct the applied aspect of the research. Data were collected using a questionnaire-based survey consisting of 35 questions and distributed to 110 managers of private banks in
... Show MoreIn this work a fragile watermarking scheme is presented. This scheme is applied to digital color images in spatial domain. The image is divided into blocks, and each block has its authentication mark embedded in it, we would be able to insure which parts of the image are authentic and which parts have been modified. This authentication carries out without need to exist the original image. The results show the quality of the watermarked image is remaining very good and the watermark survived some type of unintended modification such as familiar compression software like WINRAR and ZIP
Although text document images authentication is difficult due to the binary nature and clear separation between the background and foreground but it is getting higher demand for many applications. Most previous researches in this field depend on insertion watermark in the document, the drawback in these techniques lie in the fact that changing pixel values in a binary document could introduce irregularities that are very visually noticeable. In this paper, a new method is proposed for object-based text document authentication, in which I propose a different approach where a text document is signed by shifting individual words slightly left or right from their original positions to make the center of gravity for each line fall in with the m
... Show MoreA Genetic Algorithm optimization model is used in this study to find the optimum flow values of the Tigris river branches near Ammara city, which their water is to be used for central marshes restoration after mixing in Maissan River. These tributaries are Al-Areed, AlBittera and Al-Majar Al-Kabeer Rivers. The aim of this model is to enhance the water quality in Maissan River, hence provide acceptable water quality for marsh restoration. The model is applied for different water quality change scenarios ,i.e. , 10%,20% increase in EC,TDS and BOD. The model output are the optimum flow values for the three rivers while, the input data are monthly flows(1994-2011),monthly water requirements and water quality parameters (EC, TDS, BOD, DO and
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
Wireless networks and communications have witnessed tremendous development and growth in recent periods and up until now, as there is a group of diverse networks such as the well-known wireless communication networks and others that are not linked to an infrastructure such as telephone networks, sensors and wireless networks, especially in important applications that work to send and receive important data and information in relatively unsafe environments, cybersecurity technologies pose an important challenge in protecting unsafe networks in terms of their impact on reducing crime. Detecting hacking in electronic networks and penetration testing. Therefore, these environments must be monitored and protected from hacking and malicio
... Show More