Evolutionary algorithms are better than heuristic algorithms at finding protein complexes in protein-protein interaction networks (PPINs). Many of these algorithms depend on their standard frameworks, which are based on topology. Further, many of these algorithms have been exclusively examined on networks with only reliable interaction data. The main objective of this paper is to extend the design of the canonical and topological-based evolutionary algorithms suggested in the literature to cope with noisy PPINs. The design of the evolutionary algorithm is extended based on the functional domain of the proteins rather than on the topological domain of the PPIN. The gene ontology annotation in each molecular function, biological process, and cellular component is used to get the functional domain. The reliability of the proposed algorithm is examined against the algorithms proposed in the literature. To this end, a yeast protein-protein interaction dataset is used in the assessment of the final quality of the algorithms. To make fake negative controls of PPIs that are wrongly informed and are linked to the high-throughput interaction data, different noisy PPINs are created. The noisy PPINs are synthesized with a different and increasing percentage of misinformed PPIs. The results confirm the effectiveness of the extended evolutionary algorithm design to utilize the biological knowledge of the gene ontology. Feeding EA design with GO annotation data improves reliability and produces more accurate detection results than the counterpart algorithms.
The current study was designed to investigate the presence of aflatoxin M1 in 25 samples of pasteurized canned milk which collected randomly from some Iraqi local markets using ELISA technique. Aflatoxin M1 was present in 21 samples, the concentration of aflatoxin M1 ranged from (0.25-50 ppb). UV radiation (365nm wave length) was used for detoxification of aflatoxin M1 (sample with highest concentration /50 ppb of aflatoxin M1 in two different volumes ((25 & 50 ml)) for two different time (15 & 30 min) and 30, 60, 90 cm distance between lamp and milk layer were used for this purpose). Results showed that distance between lamp and milk layer was the most effective parameter in reduction of aflatoxin M1, and whenever the distance increase the
... Show MoreIron slag is a byproduct generated in huge quantities from recycled remnants of iron and steel factories; therefore, the possibility of using this waste in the removal of benzaldehyde from contaminated water offers an excellent topic in sustainability field. Results reveal that the removal efficiency was equal to 85% for the interaction of slag and water contaminated with benzaldehyde at the best operational conditions of 0.3 g/100 mL, 6, 180 min, and 250 rpm for the sorbent dosage, initial pH, agitation time, and speed, respectively with 300 mg/L initial concentration. The maximum uptake capacity of iron slag was 118.25 mg/g which was calculated by the Langmuir model. Physical sorption may be the major mechanism for the removal of
... Show MoreThis study proposes a mathematical approach and numerical experiment for a simple solution of cardiac blood flow to the heart's blood vessels. A mathematical model of human blood flow through arterial branches was studied and calculated using the Navier-Stokes partial differential equation with finite element analysis (FEA) approach. Furthermore, FEA is applied to the steady flow of two-dimensional viscous liquids through different geometries. The validity of the computational method is determined by comparing numerical experiments with the results of the analysis of different functions. Numerical analysis showed that the highest blood flow velocity of 1.22 cm/s occurred in the center of the vessel which tends to be laminar and is influe
... Show MoreOne of the most important problems in the statistical inference is estimating parameters and Reliability parameter and also interval estimation , and testing hypothesis . estimating two parameters of exponential distribution and also reliability parameter in a stress-strength model.
This parameter deals with estimating the scale parameter and the Location parameter µ , of two exponential distribution ,using moments estimator and maximum likelihood estimator , also we estimate the parameter R=pr(x>y), where x,y are two- parameter independent exponential random variables .
Statistical properties of this distribution and its properti
... Show More