Evolutionary algorithms are better than heuristic algorithms at finding protein complexes in protein-protein interaction networks (PPINs). Many of these algorithms depend on their standard frameworks, which are based on topology. Further, many of these algorithms have been exclusively examined on networks with only reliable interaction data. The main objective of this paper is to extend the design of the canonical and topological-based evolutionary algorithms suggested in the literature to cope with noisy PPINs. The design of the evolutionary algorithm is extended based on the functional domain of the proteins rather than on the topological domain of the PPIN. The gene ontology annotation in each molecular function, biological process, and cellular component is used to get the functional domain. The reliability of the proposed algorithm is examined against the algorithms proposed in the literature. To this end, a yeast protein-protein interaction dataset is used in the assessment of the final quality of the algorithms. To make fake negative controls of PPIs that are wrongly informed and are linked to the high-throughput interaction data, different noisy PPINs are created. The noisy PPINs are synthesized with a different and increasing percentage of misinformed PPIs. The results confirm the effectiveness of the extended evolutionary algorithm design to utilize the biological knowledge of the gene ontology. Feeding EA design with GO annotation data improves reliability and produces more accurate detection results than the counterpart algorithms.
Background: Oral carcinogenesis is a molecular and histological multistage process featuring genetic and phenotypic markers for each stage, which involves enhanced function of several oncogenes and/or the deactivation of tumor suppressor genes, resulting in the loss of cell cycle checkpoints. The progression towards malignancy includes sequential histopathological alterations ranging from hyperplasia through dysplasia to carcinoma in situ and invasive carcinoma. The p16 gene produces p16 protein, which in turn inhibits phosphorylation of retinoblastoma, p16 play a significant role in early carcinogenesis. Human papillomavirus is a well established heterogeneous virus and plays an important role in oral cancers. The aims of the study were to
... Show MoreThe aim of study To purify GPCR from a local strain of S. cerevisiae using Ion exchange and gel filtration chromatography techniques , by packing materials for columns which will be chosen of low cost comparing to the already used in published researches, which depend on the costly affinity chromatography and other expensive methods of purification. Local strain of S. cerevisiae chosen for extraction and purification of G-protein coupled receptor (GPCR) .The strains were obtained from biology department in Al- Mosul University, Iraq. The isolated colony was activated on Yeast Extract Pepton Dextrose Broth (YEPDB) and incubated at 30 C˚ for 24 h .Loop fully of the yeast culture was transferred to (10ml) of yeast extract peptone glucose
... Show MoreBiomarkers such as Interleukin-6 (IL-6), Procalcitonin (PCT), C-reactive protein (CRP) and Neutrophil-Lymphocyte Ratio (NLR) have a role in the pathogenesis of severe coronavirus disease 2019 (COVID-19). The aim of this study was to explore the differences between serum levels of such biomarkers in severe and non-severe COVID-19 cases and compare them with normal people and to evaluate the sociodemographic variables and chronic diseases effect on the severity of COVID-19. The study included 160 subjects, divided into two groups, a case group of 80 patients, and a control group of 80 normal persons. The case group was divided into two subgroups: 40 severe COVID-19 patients and 40 patients with non-severe disease. Blood IL-6 was asses
... Show MoreWireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show MoreOne of the contemporary trends in education and training is the use of educational, competitive and digital games, because one of the most important goals of games is (motivation and challenge). Thus, it ensures the expected reaction from the recipient’s interaction with the game, so we seek his interaction with the content he receives. It is no secret that games distance him from boring content and introduce him to the world of motivation by integrating them with magical elements that make an attractive and desirable game. Naturally, in the case of stimuli and motives that activate the recipient within the context of the educational process procedures, the return is high and especially enjoyable. The aim of the research is to pre
... Show MoreDetermining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreAnomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show MoreWith the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch