Face Identification system is an active research area in these years. However, the accuracy and its dependency in real life systems are still questionable. Earlier research in face identification systems demonstrated that LBP based face recognition systems are preferred than others and give adequate accuracy. It is robust against illumination changes and considered as a high-speed algorithm. Performance metrics for such systems are calculated from time delay and accuracy. This paper introduces an improved face recognition system that is build using C++ programming language with the help of OpenCV library. Accuracy can be increased if a filter or combinations of filters are applied to the images. The accuracy increases from 95.5% (without applying any filter) to 98.5% when applying a combination of Bilateral filter, Histogram Equalization and Tan and Triggs Algorithm. Finally, the results show degradation in accuracy and increasing in recognition time if images database get bigger.
The process of accurate localization of the basic components of human faces (i.e., eyebrows, eyes, nose, mouth, etc.) from images is an important step in face processing techniques like face tracking, facial expression recognition or face recognition. However, it is a challenging task due to the variations in scale, orientation, pose, facial expressions, partial occlusions and lighting conditions. In the current paper, a scheme includes the method of three-hierarchal stages for facial components extraction is presented; it works regardless of illumination variance. Adaptive linear contrast enhancement methods like gamma correction and contrast stretching are used to simulate the variance in light condition among images. As testing material
... Show MoreTwenty purified isolates were obtained by using different soil sources, only twelve isolates belonging to Aspergillus genera depending on cultural and morphological characterization. The isolates were used as alkaline protease producer. The highest proteolytic, enzymatic activity (95.83U/ml) was obtained from
This study was aimed to investigate the load of bacterial contaminant in fresh meat with different types of bacteria.One handered and seven samples were collected from different regions of Baghdad . These samples included 37 of fresh beef 70 of fresh sheep meat. All samples were cultured on different selective media to identitfy of contaminated bacteria .The result revealed that The percentage of bacterial isolate from raw sheep meat were, % 23.8of StreptococcusgroupD,29.4 % of Staphylococcus aureus ,14.7 % of E.coli , %4.9of Salmonella spp, ,%3.5 of pseudomonas aeruginosa, %14.7.%14.7 of Proteus spp.% 2.1 of Listeria spp while the raw beef meat content %5.55 of Staphylococcus aureus, %8.14 of streptococcus group D , %5.18 %1.85 of E.coli,
... Show MoreThe production of polyhydroxyalkanoates PHAs from biopolymer degrading bacteria was examined
Preparation and Identification of some new Pyrazolopyrin derivatives and their Polymerizations study