Data generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative study of several classification algorithms by testing 12 different classifiers using two international datasets to provide an accurate indicator of their efficiency and the future possibility of combining efficient algorithms to achieve better results. Finally, building several CBC datasets for the first time in Iraq helps to detect blood diseases from different hospitals. The outcome of the analysis step is used to help researchers to select the best system structure according to the characteristics of each dataset for more organized and thorough results. Also, according to the test results, four algorithms achieved the best accuracy (Logitboost, Random Forest, XGBoost, Multilayer Perceptron). Then use the Logitboost algorithm that achieved the best accuracy to classify these new datasets. In addition, as future directions, this paper helps to investigate the possibility of combining the algorithms to utilize benefits and overcome their disadvantages.
One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreThe support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreThe main objective of this study is to develop predictive models using SPSS software (version 18) for Marshall Test results of asphalt mixtures compacted by Hammer, Gyratory, and Roller compaction. Bulk density of (2.351) gm/cc, at OAC of (4.7) % was obtained as a benchmark after using Marshall Compactor as laboratory compactive effort with 75-blows. Same density was achieved by Roller and Gyratory Compactors using its mix designed methods.
A total of (75) specimens, for Marshall, Gyratory, and Roller Compactors have been prepared, based on OAC of (4.7) % with an additional asphalt contents of more and less than (0.5) % from the optimum value. All specimens have been subjected to Marshall Test. Mathematical model
... Show MoreBackground:sThe aims of this study were to evaluate and compare the ability of three different techniques to obdurate simulated lateral canals, evaluate the effect of the main canal curvature on obturation of lateral canals and compare the gutta-percha penetration between coronal and apical lateral canals. Materials and methods: Resin blocks with 30 straight and 30 curved were used in this study. Each canal has two parallel lateral canals. The main canal has 0.3 mm apical diameter and 0.04 taper. The canals were divided into six groups according to canal curvature and obturation techniques used (n=10): Groups C1 and C2: straight and curved canals obturated with continuous wave technique using E&Q masterTM system. Groups O1 and O2: straight
... Show MoreKE Sharquie, HR Al-Hamamy, AA Noaimi, AF Tahir, Journal of Cosmetics, Dermatological Sciences and Applications, 2012 - Cited by 2
Objectives. This study was carried out to quantitatively evaluate and compare the sealing ability of Endoflas by using differentobturation techniques. Materials and Methods. After 42 extracted primary maxillary incisors and canines were decoronated, theircanals were instrumented with K files of size ranging from #15 to #50. In accordance with the obturation technique, the sampleswere divided into three experimental groups, namely, group I: endodontic pressure syringe, group II: modified disposable syringe,and group III: reamer technique, and two control groups. Dye extraction method was used for leakage evaluation. Data wereanalyzed using one-way ANOVA and Dunnett’s T3 post hoc tests. The level of significance was set at p<0:05. Results.
... Show MoreSeventy five adult virgin female Norway rats (60 experimental and 15 controls) were used toevaluate the effect of seeds of three herbs (Fennel, Cumin and Garden cress) on their mammaryglands. Experimental animals were fed with these herbs (each type of herb seeds was given to twentyexperimental rats) for fourteen days. Rats were sacrificed and mammary gland sections wereobtained, stained then morphometrically assessed. Serum prolactin level was performed too.Results revealed that Garden cress seeds are the strongest lactogenic agent among the three. BothFennel and Cumin seeds were shown to be very weak galactagogues.
In this research, a selection of some mineral water was selected on the basis of being the most marketed by the owners of shops in Najaf province, with six types, where daily samples of this water were taken by 50 ml for two months from (1/11/2018 -1/1/2019). The following ions concentrations were measured (Br-, Cl-, F-, NO3-, SO42-, Na+, K+, Ca2+, Mg2+), pH and the electrical conductivity were measured and the results were compared with the allowable rates according to the international organizations. It was noted that they conform to international and Iraqi standards.