Data generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative study of several classification algorithms by testing 12 different classifiers using two international datasets to provide an accurate indicator of their efficiency and the future possibility of combining efficient algorithms to achieve better results. Finally, building several CBC datasets for the first time in Iraq helps to detect blood diseases from different hospitals. The outcome of the analysis step is used to help researchers to select the best system structure according to the characteristics of each dataset for more organized and thorough results. Also, according to the test results, four algorithms achieved the best accuracy (Logitboost, Random Forest, XGBoost, Multilayer Perceptron). Then use the Logitboost algorithm that achieved the best accuracy to classify these new datasets. In addition, as future directions, this paper helps to investigate the possibility of combining the algorithms to utilize benefits and overcome their disadvantages.
يسعى البحث إلى الاهتمام بإحدى الوظائف المهمة في إدارة الموارد البشرية وهي تقويم الأداء التي تواجه مجموعة من الانتقادات والآراء السلبية، اذ ظهر في الأّونة الأخيرة أنموذج جديد يمكن إن يتجاوز تلك السلبيات وهو أنموذج التغذية العكسية المتعدد المصادر درجة .وقد حاول الباحثان توظيف هذا المفهوم في اثنتين من المنظمات العامة العراقية هما (دائرة كهرباء الوسط) التابعة لوزارة الكهرباء
و (دائرة الماء والمجاري) ال
The research focuses on the withdrawal of the United States from the nuclear agreement signed between the permanent members of the United Nations Security Council and the Islamic Republic of Iran concerning its nuclear program. This withdrawal has caused disruption in the official media discourse of the concerned countries. Therefore, the main question can be posed: Are there differences in the positions of countries related to the nuclear agreement, as well as those countries affected by it, before and after the official withdrawal of the United States on May 8, 2018?
The research aims to shed light on the trends in media discourse of the countries that signed the nuclear agreement and those affected by it b
This research proposes the application of the dragonfly and fruit fly algorithms to enhance estimates generated by the Fama-MacBeth model and compares their performance in this context for the first time. To specifically improve the dragonfly algorithm's effectiveness, three parameter tuning approaches are investigated: manual parameter tuning (MPT), adaptive tuning by methodology (ATY), and a novel technique called adaptive tuning by performance (APT). Additionally, the study evaluates the estimation performance using kernel weighted regression (KWR) and explores how the dragonfly and fruit fly algorithms can be employed to enhance KWR. All methods are tested using data from the Iraq Stock Exchange, based on the Fama-French three-f
... Show MoreThis paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe
... Show MoreWireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica
... Show MoreAbstract
The current research aims to identify the analysis of the questions for the book of literary criticism for the preparatory stage according to Bloom's classification. The research community consists of (34) exercises and (45) questions. The researcher used the method of analyzing questions and prepared a preliminary list that includes criteria that are supposed to measure exercises, which were selected based on Bloom's classification and the extant literature related to the topic. The scales were exposed to a jury of experts and specialists in curricula and methods of teaching the Arabic language. The scales obtained a complete agreement. Thus, it was adapted to become a reliable instrument in this
... Show MoreMachine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed
... Show MoreAttention increased to the topic of academic accreditation by the university as a modern philosophy by which to improve its performance and provide high-quality education. Universities and colleges in general and Iraqi universities and colleges in particular have begun interest in accreditation and desire to get it. So starting from the pursuit of the Administration and Economics College / Baghdad University in obtaining accreditation of Association to Advance Collegiate Schools of Business (AACSB) The research is present which aims to determine the level of application (AACSB) International standards at the College of Administration and Economics / Baghdad University in preparation to get its accreditation in the future. Researc
... Show MoreApple slice grading is useful in post-harvest operations for sorting, grading, packaging, labeling, processing, storage, transportation, and meeting market demand and consumer preferences. Proper grading of apple slices can help ensure the quality, safety, and marketability of the final products, contributing to the post-harvest operations of the overall success of the apple industry. The article aims to create a convolutional neural network (CNN) model to classify images of apple slices after immersing them in atmospheric plasma at two different pressures (1 and 5 atm) and two different immersion times (3 and again 6 min) once and in filtered water based on the hardness of the slices usin
It is clear that correct application of antibiotic prophylaxis can reduce the incidence of infection resulting from the bacterial inoculation in a variety of clinical situations; it cannot prevent all infections any more than it can eliminate all established infections. Optimum antibiotic prophylaxis depends on: rational selection of the drug(s), adequate concentrations of the drug in the tissues that are at risk, and attention to timing of administration. Moreover, the risk of infection in some situations does not outweigh the risks which attend the administration of even the safest antibiotic drug. The aim of this study was to comp
... Show More