Data generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative study of several classification algorithms by testing 12 different classifiers using two international datasets to provide an accurate indicator of their efficiency and the future possibility of combining efficient algorithms to achieve better results. Finally, building several CBC datasets for the first time in Iraq helps to detect blood diseases from different hospitals. The outcome of the analysis step is used to help researchers to select the best system structure according to the characteristics of each dataset for more organized and thorough results. Also, according to the test results, four algorithms achieved the best accuracy (Logitboost, Random Forest, XGBoost, Multilayer Perceptron). Then use the Logitboost algorithm that achieved the best accuracy to classify these new datasets. In addition, as future directions, this paper helps to investigate the possibility of combining the algorithms to utilize benefits and overcome their disadvantages.
This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis
... Show MoreBackground: Complete seal of the root canal system following its chemo-mechanical debridement plays a pivotal role for achieving successful endodontic treatment. This can be established by reducing the gaps between the core filling material and root canal wall. Aim: To assess and compare the dislocation resistance of root canals obturated with GuttaFusion® and TotalFill BC sealer versus single cone obturation technique and TotalFill BC sealer after instrumentation of the canals with WaveOne, ProTaper Next and ProTaper Universal system. Material and Method: Sixty extracted human permanent mandibular premolars were conducted in the current study. The teeth were decorated and left the root with 15mm length; the roots were divided randomly i
... Show MoreThis study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO
... Show MoreEscherichia coli (E. coli) is a frequent gram-negative bacterium that causes nosocomial infections, affecting more than 100 million patients annually worldwide. Bacterial lipopolysaccharide (LPS) from E. coli binds to toll-like receptor 4 (TLR4) and its co-receptor’s cluster of differentiation protein 14 (CD14) and myeloid differentiation factor 2 (MD2), collectively known as the LPS receptor complex. LPCAT2 participates in lipid-raft assembly by phospholipid remodelling. Previous research has proven that LPCAT2 co-localises in lipid rafts with TLR4 and regulates macrophage inflammatory response. However, no published evidence exists of the influence of LPCAT2 on the gene expression of the LPS receptor complex induced by smooth or rough b
... Show MoreBackground: Ultrasonography has been used to examine the thickness of the lower uterine segment in women with previous cesarean sections in an attempt to predict the risk of scar dehiscence during subsequent pregnancy. The predictive value of such measurement has not been adequately assessed. Objectives: To correlate lower uterine segment thickness measured by trans abdominal ultrasound in pregnant women with previous cesarean section with that measured during cesarean section by caliper and to find out minimum lower uterine segment thickness indicative of integrity of the scar.Methods: A prospective observational study at Elwyia Maternity Teaching Hospital, from January 2011 to January 2012. A total of 143 women were enrolled in the stu
... Show MoreThe Vulnerable Indian Roofed Turtle Pangshura tecta (Gray, 1831) (Testudines: Geoemydidae) occurs in the Sub-Himalayan lowlands of India, Nepal, Bangladesh, and Pakistan. Little is known about its natural history, no studies have been conducted revealing its natural predators. In this study, a group of Large-billed Crow Corvus macrorhynchos Wagler, 1827 (Passeriformes: Corvidae) was observed hunting and predating on an Indian Roofed Turtle carcass in the bank of river Kuakhai, Bhubaneswar, India. The first record of this predation behaviour is reported and substantiated by photographic evidence.
The research aimed to identify “The impact of an instructional-learning design based on the brain- compatible model in systemic thinking among first intermediate grade female students in Mathematics”, in the day schools of the second Karkh Educational directorate.In order to achieve the research objective, the following null hypothesis was formulated:There is no statistically significant difference at the significance level (0.05) among the average scores of the experimental group students who will be taught by applying an (instructional- learning) design based to on the brain–compatible model and the average scores of the control group students who will be taught through the traditional method in the systemic thinking test.The resear
... Show More